首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mgg(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.  相似文献   

2.
Molecular imprinting is an established method for the creation of artificial recognition sites in synthetic materials through polymerization and cross-linking in the presence of template molecules. Removal of the templates leaves cavities that are complementary to the template molecules in size, shape, and functionality. In recent years, various theoretical and computational models have been developed as tools to aid in the design of molecularly imprinted polymers (MIPs) or to provide insight into the features that determine MIP performance. These studies can be grouped into two general approaches-screening for possible functional monomers for particular templates and macromolecular models focusing on the structural characterization of the imprinted material. In this review, we pay special attention to coarse-grained models that characterize the functional heterogeneity in imprinted pores, but also cover recent advances in atomistic and first principle studies. We offer a critical assessment of the potential impact of the various models towards improving the state-of-the-art of molecular imprinting.  相似文献   

3.
A strategy for arranging two porphyrin moieties in a face-to-face fashion in polymeric material was demonstrated by molecular imprinting, whereby porphyrin Zn(II) complex monomers were cross-linked with ethylene glycol dimethacrylate in the presence of pyrazine or 1,5-naphthyridine as a template molecule. In chromatographic studies using the resultant imprinted polymers as stationary phase, both the polymers showed selectivity for the original template molecule, suggesting that two zinc porphyrin moieties were immobilized in the face-to-face fashion, and were center-aligned for pyrazine recognition and offset-arranged for 1,5-naphthyridine recognition. The imprinted polymer with porphyrin moieties also showed a decrease in its fluorescence intensity in response to the concentration of the target molecule, suggesting the potential utility as sensing material.  相似文献   

4.
Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles.  相似文献   

5.
Naturally occurring steroids such as progesterone, testosterone and 17β-estradiol were analyzed in this study. These bio-identical molecules paradoxically can be either beneficial or harmful. Unfortunately as growth promoters can be toxic and cancerogenic at elevated levels. Due to difficulty in monitoring at trace quantities of these hormones in biological matrices specific adsorption materials molecularly imprinted polymers (MIPs) were used for preconcentration and clean up in sample preparation step. A non-covalent imprinting approach was used for bulk polymerization of progesterone, testosterone and 17β-estradiol imprinted polymers. Synthesis of MIPs was achieved by thermal, UV and γ irradiation initiated polymerization whereby were used methacrylic acid (MAA), 4-vinylpyridine (4-VP) as functional monomers, ethylene glycol dimethacrylate (EDMA), trimethylolpropane trimethacrylate (TRIM) as cross-linking agents and acetonitrile, isooctane–toluene (1:99, v/v) and chloroform as porogen solvents. It was also used as initiator 2,2′-azobis(2-methylpropionitrile) (AIBN) or benzyl methyl ether (BME). The MIPs were applied as selective sorbents in solid-phase extraction (SPE). Molecularly imprinted solid-phase extraction (MISPE) considered as hyphenated technique were applied in extraction step before HPLC-DAD analysis of steroids from human urine.  相似文献   

6.
A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non‐imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non‐imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Molecular imprinting is a newly developed methodology which provides molecular assemblies of desired structures and properties and is being increasingly used for several applications such as in separation processes, microreactors, immunoassays and antibody mimics, catalysis, artificial enzymes, biosensor recognition elements and bio- and chemo-sensors. The ambient processing conditions and versatility of the sol-gel process makes sol-gel glassy matrix suitable for molecular imprinting. The progress of sol-gel based molecular imprinted polymers (MIPs) for various applications can be seen from the growing number of publications. The main focus of the review is molecular imprinting in sol-gel matrix and applications of molecular imprinted sol-gel derived materials for the development of sensors. Combining sol-gel process with molecular imprinting enables to procure the sensors with greater sensitivity and selectivity necessary for sensing applications. The merits, problems, challenges and factors affecting molecular imprinting in sol-gel matrix have been discussed. Considerable attention has been drawn on recent developments like use of organically modified silane precursors (ORMOSILS) for the synthesis of hybrid molecular imprinted polymers (HMIPs) and applying surface sol-gel process for molecular imprinting. The development of molecular imprinted sol-gel nanotubes for biochemical separation and bio-imprinting is a new advancement and is under progress. Templated xerogels and molecularly imprinted sol-gel films provide a good platform for various sensor applications.  相似文献   

8.
Gao S  Wang W  Wang B 《Bioorganic chemistry》2001,29(5):308-320
The ability to custom-make fluorescent sensors for different analytes could have a tremendous impact in a variety of areas. Template-directed polymerization or molecular imprinting seems to be a promising approach for the preparation of high-affinity and specific binding sites for different template molecules. However, the application of molecular imprinting in the preparation of fluorescent sensors has been hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. We have designed and synthesized a fluorescent monomer (1) that allows for the preparation of fluorescent sensors of cis diols using molecular imprinting methods. This monomer has been used for the preparation of imprinted polymers as sensitive fluorescent sensors for D-fructose. The imprinted polymers prepared showed significant fluorescence intensity enhancement upon binding with the template carbohydrate.  相似文献   

9.
10.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

11.
Molecular modelling and computational screening were used to identify functional monomers capable of interacting with several different photosynthesis-inhibiting herbicides. The process involved the design of a virtual library of molecular models of functional monomers containing polymerizable residues and residues able to interact with the template through electrostatic, hydrophobic, Van der Waals forces and dipole-dipole interactions. Each of the entries in the virtual library was probed for its possible interactions with molecular models of the template molecules. It was anticipated that the monomers giving the highest binding score would represent good candidates for the preparation of affinity polymers. Strong interactions were computationally determined between acidic functional monomers like methacrylic acid (MAA) or itaconic acid (IA) with triazines, and between vinylimidazole with bentazone and bromoxynil. Nevertheless, weaker interactions were seen with phenylureas. The corresponding blank polymers were prepared using the selected monomers and tested in the solid phase extraction (SPE) of herbicides from chloroform solutions. A good correlation was found between the binding score of the monomers and the affinities of the corresponding polymers. The use of computationally designed blanks can potentially eliminate the need for molecular imprinting, (adding a template to the monomer mixture to create specific binding sites). Data also showed that some monomers have a natural selectivity for some herbicides, which can be further enhanced by imprinting. Thus, in regard to retention on the blank polymer, we can estimate if the resulting imprinted polymer will be effective or not.  相似文献   

12.
Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr-imprinted cryogel cartridge (MIP1) was prepared using metal-chelate coordination for the imprinting process by free-radical bulk polymerization under frozen conditions, and Tyr-imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5–2.5 ml/min), pH of the medium (4.0–8.0), initial Tyr concentration (0.1–3.0 mg/ml), and temperature (4–45°C). Selectivity experiments of Tyr-imprinted and non-imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr-imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.  相似文献   

13.
A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.  相似文献   

14.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

15.
It is a fact that molecular imprinting techniques have reached tremendous importance in the research of new artificial recognition systems. These methods resemble the mechanism of natural recognition, generally based on non-covalent interactions, but improving their stability by means of a simple and inexpensive technique. Molecular imprinting polymers (MIPs) are easily obtained by copolymerisation of suitable functional monomers and crosslinkers in the presence of the print molecule. Removal of the template leaves a polymer that selectively recognises it. In this work, different imprinted polymers for chloramphenicol (CAP) obtained using different monomers and polymerisation conditions were tested in a HPLC system, in order to obtain a highly selective material for CAP. The optimised MIP was then used as recognition phase in a fluorescent competitive flow assay to determine chloramphenicol.  相似文献   

16.
Epitope imprinting is a promising technique for fabrication of novel diagnostic tools. In this study, an epitope imprinted methodology for recognition of target epitope sequence as well as targeted protein infused by bacterial infection in blood samples of patients suffering from brain fever is developed. Template sequence chosen is a ferric iron binding fbp A protein present in Neisseria meningitidis bacteria. To orient the imprinting template peptide sequence on gold surface of electrochemical quartz crystal microbalance (EQCM), thiol chemistry was utilized to form the self‐assembled monolayer on EQCM electrode. Here, synergistic effects induced by various noncovalent interactions extended by multiple monomers (3‐sulfopropyl methacrylate potassium‐salt and benzyl methacrylate) were used in fabricating the imprinting polymeric matrix with additional firmness provided by N,N‐methylene‐bis‐acrylamide as cross‐linker and azo‐isobutyronitrile as initiator. Extraction of template molecule was carried out with phosphate buffer solution. After extraction of epitope molecules from the polymeric film, epitope molecularly imprinted polymeric films were fabricated on EQCM electrode surface. Nonimprinted polymers were also synthesized in the similar manner without epitope molecule. Detection limit of epitope molecularly imprinted polymers and imprinting factor (epitope molecularly imprinted polymers/nonimprinted polymers) was calculated 1.39 ng mL?1 and 12.27 respectively showing high binding capacity and specific recognition behavior toward template molecule. Simplicity of present method would put forward a fast, facile, cost‐effective diagnostic tool for mass health care.  相似文献   

17.
The selectivity of chitosan has been modified through metal ion imprinting technique for its potential application in nuclear industry. Considerable reduction in radioactive waste volume, generated during the chemical decontamination of nuclear power plants, can be achieved through the selective removal of the radionuclides. In this context, a Co(II) imprinted chitosan was synthesized using epichlorohydrin as the crosslinker. The selective removal of Co(II) in presence of Fe(II), which is the major non-radioactive ion present in excess during decontamination, was studied. The imprinted chitosan showed selective sorption of Co(II) over Fe(II), while the raw chitosan was selective to Fe(II) over Co(II). The imprinted chitosan was found to retain the enhanced selectivity towards Co(II) under various solution conditions, including typical nuclear reactor decontamination formulations containing strong complexants. The highest uptake by the imprinted chitosan, with maximum selectivity for Co(II) over Fe(II), was obtained in citrate medium at pH 4.8.  相似文献   

18.
A novel chemosensitive ultrathin film with high selectivity was developed for the detection of naproxen, paracetamol, and theophylline using non-covalent electropolymerized molecular imprinted polymers (E-MIP). A series of monofunctional and bifunctional H-bonding terthiophene and carbazole monomers were compared for imprinting these drugs without the use of a separate cross-linker. A key step is the fast and efficient potentiostatic method of washing the template, which facilitated enhanced real-time sensing by surface plasmon resonance (SPR) spectroscopy. Various surface characterizations (contact angle, ellipsometry, XPS, AFM) of the E-MIP film verified the templating and release of the drug from the cross-linked conducting polymer film.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号