首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We tested bile acid oxazoline derivatives of chenodeoxycholic (CDC-OX), 7-ketolithocholic (7-KLC-OX), ursodeoxycholic (UDC-OX), and deoxycholic (DC-OX) as inhibitors of the 7-epimerization of the primary bile acids cholic acid (CA) and CDC in cultures of four species of bacteria and the human fecal flora. The organisms tested elaborate a 7 alpha- and/or 7 beta-hydroxysteroid dehydrogenase (HSDH); they were Escherichia coli (7 alpha-HSDH), Bacteroides fragilis (7 alpha-HSDH), Clostridium absonum (7 alpha- and 7 beta-HSDH) and Eubacterium aerofaciens (7 beta-HSDH). None of the oxazolines affected 7 alpha-OH oxidation of CA or CDC by E. coli or the growth of the organism. All the oxazolines (except UDC-OX) inhibited the growth of B. fragilis and its 7 alpha-HSDH. In contrast, only DC-OX blocked 7 alpha-OH epimerization of CA by C. absonum. Surprisingly, the other three oxazolines enhanced 7 alpha-OH epimerization of CA, but not that of CDC, which was inhibited (CDC-OX greater than 7-KLC-OX much greater than UDC-OX). Enzymic data suggest that CDC-OX in the presence of CA can induce a greater level of both 7 alpha- and 7 beta-HSDH than CA or CDC-OX alone, CDC-OX being more toxic in the presence of CDC. Formation of urso-bile acid from 7-keto substrates by E. aerofaciens is totally blocked by the oxazolines (except UDC-OX). Similarly, suppression of urso-bile acid formation from primary bile acids by the human fecal flora was evident with DC-OX greater than 7-KLC-OX greater than CDC-OX much greater than UDC-OX, the last being ineffective. The inhibitory activity of the oxazolines on the 7-dehydroxylation of primary bile acids by human fecal flora followed the same order.  相似文献   

2.
Preparations of 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) from Clostridium perfringens were successfully lyophilized into a stable powder form. Purification of the enzyme was achieved using triazine dye affinity chromatography. C. perfringens 3 alpha-hydroxysteroid dehydrogenase was purified 24-fold using Reactive Red 120 (Procion Red) -cross-linked agarose (70% yield). Quantitative measurement of bile acids with the purified enzymes, 3 alpha-hydroxysteroid dehydrogenase and 7 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.159) from Clostridium bifermentans (strain F-6), was achieved spectrophotometrically. Standard curves with chenodeoxycholic acid (CDC) and cholic acid were linear within a concentration range of 20-100 microM. Analysis of mixtures of ursodeoxycholic acid and CDC showed the additive nature of the 3 alpha-hydroxysteroid dehydrogenase and showed also that 7 alpha-hydroxyl groups were independently quantified by the 7 alpha-hydroxysteroid dehydrogenase. Bile acids in Folch extracts of human bile samples were measured using purified preparations of Pseudomonas testosteroni 3 alpha-hydroxysteroid dehydrogenase, C. perfringens 3 alpha-hydroxysteroid dehydrogenase, Escherichia coli 7 alpha-hydroxysteroid dehydrogenase and C. bifermentans (strain F-6) 7 alpha-hydroxysteroid dehydrogenase. Statistical comparison validated the use of C. perfringens 3 alpha- and C. bifermentans 7 alpha-hydroxysteroid dehydrogenases for the quantification of bile acids in bile.  相似文献   

3.
The role of bile acid-inducible polypeptides in 7-dehydroxylation was investigated in Eubacterium sp. V.P.I. 12708. Cholic acid-inducible bile acid 7 alpha-, 7 beta-dehydroxylase, and delta 6 reductase activities co-eluted from a gel filtration high performance liquid chromatography (HPLC) column. Antibody (Ab) was prepared to these enzymatically active fractions, immunoadsorbed with uninduced cell extract coupled to Sepharose 4B, and used for immunoprecipitation of [35S]-methionine-labeled polypeptides. Ab immunoprecipitated polypeptides with molecular weights of 45,000, 27,000, and 23,500 from induced but not uninduced cell extracts. Immunoinhibition experiments showed that this Ab preparation inhibited (60%) bile acid 7 alpha-dehydroxylase activity in cell extracts. The 45,000 mol wt polypeptide was purified by (NH4)2SO4 fractionation, HPLC gel filtration, and HPLC-DEAE chromatography. Ab prepared to the 45,000 mol wt polypeptide immunoprecipitated only that polypeptide. This Ab, however, did not inhibit bile acid 7 alpha-dehydroxylase activity. Ab specific for the 27,000 mol wt polypeptide was prepared by partial purification and immunoadsorption with uninduced cell extracts. Immunochemical staining, following SDS-PAGE of crude cell extracts, shows a single immunoreactive protein band at 27,000 daltons. This Ab immunoprecipitated the 27,000 mol wt polypeptide as well as small amounts of the 45,000 and 23,000 mol wt polypeptides. Immunoinhibition studies showed that this Ab preparation inhibited (25%) 7 alpha-dehydroxylase activity. These data suggest that the 27,000 mol wt polypeptide is involved in enzyme catalysis. This does not, however, eliminate some role for the 45,000 and 23,500 mol wt polypeptides in bile acid metabolism in this organism.  相似文献   

4.
The paper reports the partial purification and characterization of the 7beta- and 7alpha-hydroxysteroid dehydrogenases (HSDH) and cholylglycine hydrolase (CGH), isolated from Xanthomonas maltophilia CBS 897.97. The activity of 7beta-HSDH and 7alpha-HSDH in the reduction of the 7-keto bile acids is determined. The affinity of 7beta-HSDH for bile acids is confirmed by the reduction, on analytical scale, to the corresponding 7beta-OH derivatives. A crude mixture of 7alpha- and 7beta-HSDH, in soluble or immobilized form, is employed in the synthesis, on preparative scale, of ursocholic and ursodeoxycholic acids starting from the corresponding 7alpha-derivatives. On the other hand, a partially purified 7beta-HSDH in a double enzyme system, where the couple formate/formate dehydrogenase allows the cofactor recycle, affords 6alpha-fluoro-3alpha, 7beta-dihydroxy-5beta-cholan-24-oic acid (6-FUDCA) by reduction of the corresponding 7-keto derivative. This compound is not obtainable by microbiological route. The efficient and mild hydrolysis of glycinates and taurinates of bile acids with CGH is also reported. Very promising results are also obtained with bile acid containing raw materials.  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenases (7β-HSDH) from Clostridium absonum catalyze the epimerization of primary bile acids through 7-keto bile acid intermediates and may be suitable as biocatalysts for the synthesis of bile acids derivatives of pharmacological interest. C. absonum 7α-HSDH has been purified to homogeneity and the N-terminal sequence has been determined by Edman sequencing. After PCR amplifications of a gene fragment with degenerate primers, cloning of the complete gene (786?nt) has been achieved by sequencing of C. absonum genomic DNA. The sequence coding for the 7β-HSDH (783?nt) has been obtained by sequencing of the genomic DNA region flanking the 5' termini of 7α-HSDH gene, the two genes being contiguous and presumably part of the same operon. After insertion in suitable expression vectors, both HSDHs have been successfully produced in recombinant form in Escherichia coli, purified by affinity chromatography and submitted to kinetic analysis for determination of Michaelis constants (K (m)) and specificity constants (k (cat)/K (m)) in the presence of various bile acids derivatives. Both enzymes showed a very strong substrate inhibition with all the tested substrates. The lowest K (S) values were observed with chenodeoxycholic acid and 12-ketochenodeoxycholic acid as substrates in the case of 7α-HSDH, whereas ursocholic acid was the most effective inhibitor of 7β-HSDH activity.  相似文献   

6.
A lecithinase-lipase-negative Clostridium sp. 25.11.c., not fitting in any of the species of Clostridia described so far as judged by morphological, physiological, and biochemical data, was shown to contain NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenases. The three hydroxysteroid dehydrogenases could be demonstrated in the supernatant and in the membrane fraction after solubilization with Triton X-100, suggesting enzymes which were originally membrane bound. The 3 beta-hydroxysteroid dehydrogenase was synthesized constitutively, and the specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids and trisubstituted bile acids. A pH optimum of 7.5 and a molecular weight of approx. 104,000 were estimated by molecular sieve chromatography. The enzyme reduced the 3-keto group of bile acids; an oxidation of a 3 beta-hydroxyl function could not be demonstrated. The lowest Km values were found for disubstituted bile acids, trisubstituted and conjugated bile acids having higher Km values. 7 alpha-Hydroxysteroid dehydrogenase, but not 7 beta-hydroxysteroid dehydrogenase, was already present in uninduced cells. The specific activities, however, were greatly enhanced when cells were grown in the presence of chenodeoxycholic acid or 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid. Ursodeoxycholic acid with its 7 beta-hydroxyl group was ineffective as an inducer. Molecular weights of approx. 82,000 and 115,000 were found for the 7 alpha-hydroxysteroid dehydrogenase and the 7 beta-hydroxysteroid dehydrogenase, respectively. In contrast to the in vivo situation, the reaction could only be demonstrated in the reductive direction in vitro. Here, the pH optimum for the overall reaction was 8.5-8.7. 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities were readily demonstrated for at least 48 h when preparations were stored at 4 degrees C, but were found to be heat-sensitive.  相似文献   

7.
Transformation of bile acids by washed whole cells of strain HD-17, an unidentified gram-positive anaerobic bacterium isolated from human feces, was studied. 7 alpha-Dehydroxylase was produced only during adaptive growth on medium containing 7 alpha-hydroxy bile acids. Both the extent of hydroxylation and the state of conjugation of the bile acids had marked effects on the induction of the enzyme, and the order of the enzyme induction was conjugated cholic acid much greater than cholic acid greater than taurochenodeoxycholic acid greater than or equal to chenodeoxycholic acid. The addition of excess glucose to the growth medium appreciably reduced the enzyme level. The induced enzyme required strict anaerobic conditions for activity and had an optimal pH range of 6.5 to 7.5. In contrast with the induction of the enzyme, the induced enzyme showed a low degree of substrate specificity between cholic acid and chenodeoxycholic acid, with some preference for the former. In addition, the organism contained 3 alpha-, 7 alpha-, and 12 alpha-hydroxysteroid dehydrogenases, and the addition of bile acids to the medium somewhat enhanced the production of the oxidoreductases. The dehydrogenations were obviously stimulated by oxygen as a terminal electron acceptor. The organism also contained bile salt hydrolase.  相似文献   

8.
Transformation of bile acids by washed whole cells of strain HD-17, an unidentified gram-positive anaerobic bacterium isolated from human feces, was studied. 7 alpha-Dehydroxylase was produced only during adaptive growth on medium containing 7 alpha-hydroxy bile acids. Both the extent of hydroxylation and the state of conjugation of the bile acids had marked effects on the induction of the enzyme, and the order of the enzyme induction was conjugated cholic acid much greater than cholic acid greater than taurochenodeoxycholic acid greater than or equal to chenodeoxycholic acid. The addition of excess glucose to the growth medium appreciably reduced the enzyme level. The induced enzyme required strict anaerobic conditions for activity and had an optimal pH range of 6.5 to 7.5. In contrast with the induction of the enzyme, the induced enzyme showed a low degree of substrate specificity between cholic acid and chenodeoxycholic acid, with some preference for the former. In addition, the organism contained 3 alpha-, 7 alpha-, and 12 alpha-hydroxysteroid dehydrogenases, and the addition of bile acids to the medium somewhat enhanced the production of the oxidoreductases. The dehydrogenations were obviously stimulated by oxygen as a terminal electron acceptor. The organism also contained bile salt hydrolase.  相似文献   

9.
A human fecal isolate, characterized by morphological, physiological and biochemical data as a strain of Peptostreptococcus roductus, was shown to contain NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenases and a NADP-dependent 7 beta-hydroxysteroid dehydrogenase. All enzyme activities could be demonstrated in crude extracts and in membrane fractions. The 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were synthesized constitutively. Specific enzymatic activities were significantly reduced when bacteria were grown in the presence of 3-keto bile acids, while other bile acids were ineffective. For the 3 alpha (3 beta)-hydroxysteroid dehydrogenase, a pH optimum of 8.5 (9.5) and a molecular weight of 95,000 (132,000) was estimated. 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were heat-sensitive (about 75% inactivation at 50 degrees C for 10 min). The 7 beta-hydroxysteroid dehydrogenase was already present in uninduced cells, but specific activity could be enhanced up to more than 2.5-fold when bacteria were grown in the presence of 7-keto bile acids. Disubstituted bile acids were more effective than trisubstituted ones, ursodeoxycholic acid was ineffective as an inducer. A pH optimum of 10.0 and a molecular weight of about 82,000 were shown for the 7 beta-hydroxysteroid dehydrogenase. The enzyme preparation reduced the 7-keto group of corresponding bile acids. Again the affinities of disubstituted bile acids for the enzyme were higher than those of the trisubstituted bile acids, but no significant differences between conjugated and free bile acids were observed. The 7 beta-hydroxysteroid dehydrogenase was heat-sensitive (72% inactivation at 50 degrees C for 10 min), but was detectable at 4 degrees C for at least 48 h.  相似文献   

10.
Ursodeoxycholic acid was estimated in bile samples from humans and wild North American black bears using 7 beta-hydroxysteroid dehydrogenase purified from Clostridium absonum by Procion Red affinity chromatography. The percentage ursodeoxycholic acid was calculated by two methods: (a) 7 beta-hydroxyl groups were quantified using 7 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxyl groups (total bile acids) were quantified using 3 alpha-hydroxysteroid dehydrogenase. The percentage ursodeoxycholic acid was calculated on the basis of [7 beta-hydroxyl groups]/[3 alpha-hydroxyl groups] X 100. (b) Bile was hydrolyzed with sodium hydroxide and subjected to thin-layer chromatography. Bands corresponding to cholic acid, chenodeoxycholic acid plus deoxycholic acid, and ursodeoxycholic acid were identified by the use of standards and Komarowsky's spray reagent. Total bile acids and total ursodeoxycholic acid were measured by elution of silica gel in unsprayed areas corresponding to the bile acid standards and quantification of the total bile acid in each eluate. Direct comparison of these methods validated the use of 7 beta-hydroxysteroid dehydrogenase in the estimation of ursodeoxycholic acid in the biles of black bears and of patients fed ursodeoxycholic acid for cholesterol gallstone dissolution. Relative percentages of ursodeoxycholic acid were 8-24% in four bears and 22 and 27% in the patients ingesting 500 and 750 mg ursodeoxycholic acid per day for 3 months, respectively. Predictably lower values were obtained in two control subjects and one patient ingesting 750 mg chenodeoxycholic acid per day for 3 months.  相似文献   

11.
A gram-positive, rod-shaped anaerobe (isolate F-14) was isolated from soil. This organism was identified by cellular morphology as well as by fermentative and biochemical data as Clostridium limosum. Isolate F-14 formed ursocholic acid (UC) and 7-ketodeoxycholic acid (7-KDC) from cholic acid (CA), and ursodeoxycholic acid (UDC) and 7-ketolithocholic acid (7-KLC) from chenodeoxycholic acid (CDC) in whole cell cultures, but did not transform deoxycholic acid (DC). No hydrolysis or transformation occurred when either taurine- or glycine-conjugated bile acids were incubated with F-14. The type stain of Clostridium limosum (American Type Culture Collection 25620) did not transform bile acids. The structures of ursocholic, ursodeoxycholic, 7-ketodeoxycholic, and 7-ketolithocholic acids were verified by mass spectroscopy and by thin-layer chromatography using Komarowsky's spray reagent. The organism transformed cholic and chenodeoxycholic acids at concentrations of 20 mM and 1 mM, respectively; higher concentrations of bile acids inhibited growth. Optimal yields of ursocholic and ursodeoxycholic acids were obtained at 9-24 hr of incubation and depended upon the substrate used. Increasing yields of 7-ketodeoxycholic and 7-ketolithocholic acids, and decreasing yields of ursocholic and ursodeoxycholic acids were observed with longer periods of incubation. Culture pH changed with time and was characterized by a small initial drop (0.2-0.4 pH units) and a subsequent increase to a pH (8.1-8.2) that was above the starting pH (7.4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
It is postulated that the six conjugated bile acids of most common occurrence in human bile could be analyzed by three enzymic and one chemical assay without any prior chromatographic separation of the bile acids. In health, all bile acids in liver or gall bladder bile are conjugated with either glycine or taurine and have an a-hydroxyl group at the 3 position. In addition, the trihydroxy bile acid, cholic (C) has a 7α- and a 12α-hydroxy group while the dihydroxy bile acids either have a second hydroxyl group at the 7α-position (chenodeoxycholic acid, CDC) or at the 12α-position (deoxycholic acid, DC). Hydroxysteroid dehydrogenases (HSDH) specific for oxido-reductase activity at the 3α-, 7α- and 12α-positions would directly quantify these 3α-, 7α- and 12α-hydroxyl groups in a sample of bile or bile extract. Subsequent data would be used to solve three simultaneous equations yielding solutions for the overall concentrations of conjugated C, conjugated CDC and conjugated DC on the assumption that the overall concentration of lithocholic acid is negligible (< 2 %). A suitable assay for the sulphonate group containing taurine conjugates, such as that described by Christie, Macdonald & Williams, 1975, along with the total bile acid measurement would readily facilitate the estimation of the glycine/taurine (GT) ratio. This ratio applied to the enzymatically derived estimates for conjugated DC, CDC and C would approximate the glycodeoxycholate (GDC), glycochenodeoxycholate (GCDC), glycocholate (GC), taurodeoxycholate (TDC), taurochenodeoxycholate (TCDC) and taurocholate (TC) concentrations. Figures for these concentrations would be based on the assumption that the GT ratio is approximately the same for each bile acid and that all the bile acids are conjugated.  相似文献   

13.
The effects of sulfonate analogs of cholic (C), chenodeoxycholic (CDC), and ursodeoxycholic acid (UDC) and three 7-alkylated CDCs--7-methyl-, 7-ethyl-, and 7-propyl-CDCs--on taurocholate absorption from rat terminal ileum in situ and on cholesterol 7alpha-hydroxylase activity in primary culture of the rat liver were investigated. The sulfonate analogs of two dihydroxy bile acids CDC and UDC, but not C, significantly decreased the absorption of taurocholate. Taurine conjugates of 7-alkylated CDC slightly decreased the taurocholate absorption, and tauro-7-propyl-CDC significantly suppressed the absorption. Although the sulfonate analogs of C and CDC reduced cholesterol 7alpha-hydroxylase activity by 40% and 60% compared to control, UDC-sulfonate analog did not affect enzymatic activity. These results were consistent with those of the lead compounds, C, CDC, and UDC. The introduction of methyl group at C-7 position of CDC attenuated the reduction in cholesterol 7alpha-hydroxylase activity by CDC. However, elongation of the alkyl group resulted in an inhibitory effect. The present study revealed the following: 1) bile acid sulfonates act on cholesterol and bile acid metabolism in a similar manner as taurine conjugated bile acids; and 2) the biologic properties of CDC could be altered by the introduction of alkyl group at C-7 position.  相似文献   

14.
Eubacterium sp. strain VPI 12708 is an anaerobic intestinal bacterium that has inducible bile acid 7-dehydroxylation activity. At least four new polypeptides were synthesized after addition of primary bile acids to the growth medium. One of these, of molecular weight 27,000 (P-27), was shown to be involved in the 7-dehydroxylation reaction sequence. The gene coding for P-27 was cloned, and the entire DNA sequence for the protein-coding region was determined. In addition, sequence information was obtained for 294 bases upstream from the translational start codon and 329 bases downstream from the stop codon. Induction studies with a synthetic oligonucleotide probe (16-mer) revealed the presence of a cholic acid-inducible mRNA species approximately 900 bases long. A 5' terminus of this mRNA was detected by primer extension analysis, and the location of the 3' terminus of the mRNA was estimated by using S1 nuclease mapping. The 3' terminus of the mRNA contained a large element with dyad symmetry of unknown function. The open reading frame contained 249 codons, and the corresponding polypeptide had a calculated molecular weight of 26,745. The amino acid sequence of P-27 showed significant homology to several previously described alcohol-polyol dehydrogenases ("nonzinc" dehydrogenases), especially in the region believed to contain a pyridine nucleotide-binding domain. The implications of this homology and the possible function of P-27 in bile acid 7-dehydroxylation are discussed.  相似文献   

15.
A NAD-dependent 7alpha-hydroxysteroid dehydrogenase was purified 18-fold over the activity in crude cell extracts prepared from Bacteroides thetaiotaomicron NCTC 10852 using Bio-Gel A 1.5-M column chromatography. A molecular weight of 320 000 was estimated for the partially purified intact enzyme. Substrate saturation kinetics were performed using the 18-fold purified enzyme and the lowest Km values were obtained for 3alpha,7alpha-dihydroxy bile acid and bile salt substrates including chenodeoxycholic acid (Km 0.048 mM), glycochenodeoxycholic acid (Km 0.083 mM) and taurochenodeoxycholic acid (Km 0.059 mM). In contrast, 3alpha,7alpha,12alpha-trihydroxy bile acid and bile salts had higher Km values, i.e. cholic acid (Km 0.22 mM), glycoholic acid Km 0.32 mM) and taurocholic acid Km 0.26 mM). NAD had a Km value of 0.20 mM. The possible physiological significance of 7alpha-hydroxy bile acid oxidation to intestinal bacteroides strains was accessed by determining the rate of conversion of [14C]-cholic acid to 7-ketodeoxy[14C]cholic acid by whole cell suspensions under different incubation conditions. The rate of biotransformation of bile acid to keto-bile acid incubated anaerobically under N2 gas increased markedly when potential electron acceptors such as fumarate (10 mM) or menadione (4 mM) was added exogenously. These results suggest that bile acid oxidation reactions may be linked to energy-generating systems in this bacterium.  相似文献   

16.
Eubacterium sp. strain VPI 12708 is an intestinal anaerobic bacterium which possesses an inducible bile acid 7-dehydroxylation activity. Two cholic acid-induced polypeptides with apparent molecular weights of 27,000 and 45,000, respectively, coeluted with bile acid 7-dehydroxylation activity upon anaerobic high-performance gel filtration chromatography of crude cellular protein extracts. The 45,000-dalton polypeptide was purified to greater than 95% homogeneity by high-performance liquid chromatography gel filtration and high-performance liquid-DEAE chromatography. The first 28 amino acid residues of the N terminus of this polypeptide were determined by gas-phase sequencing, and a corresponding mixed oligonucleotide (20-mer) was synthesized. Southern blot analysis of EcoRI total digests of chromosomal DNA showed a 2.6-kilobase fragment which hybridized to the 32P-labeled 20-mer. This fragment was enriched for by size fractionation of an EcoRI total digest of genomic DNA and ligated into bacteriophage lambda gt11. Recombinant phage containing the putative gene encoding the 45,000-dalton polypeptide were detected with the 32P-labeled 20-mer by plaque hybridization techniques. The insert was 2.6 kilobases in length and may contain the entire coding sequence for the 45,000-dalton polypeptide. The 2.6-kilobase insert was subcloned into pUC8 and transformed into Escherichia coli DH5 alpha. However, the 45,000-dalton polypeptide was not detected in cell extracts of this organism when specific antibody was used. Preliminary nucleic acid sequence data correlated exactly with the amino acid sequence. A cholic acid-induced mRNA species of greater than 6 kilobases in size was identified by Northern (RNA) blot analysis of total RNA, suggesting that the gene coding for this polypeptide is part of a larger operon.  相似文献   

17.
The rate of 7alpha-dehydroxylation of primary bile acids was quantitatively measured radiochromatographically in anaerobically washed whole cell suspensions of Clostridium leptum. The pH optimum for the 7alpha-dehydroxylation of both cholic and chenodeoxycholic acid was 6.5-7.0. Substrate saturation curves were observed for the 7alpha-dehydroxylation of cholic and chenodeoxycholic acid. However, cholic acid whole cell K0.5 (0.37 micron) and V (0.20 mumol hr-1mg protein-1) values differed significantly from chenodeoxycholic acid whole cell K0.5 (0.18 micron) and V (0.50 mumol-1 hr-1 mg protein-1). 7alpha-Dehydroxylation activity was not detected using glycine and taurine-conjugated primary bile acids, ursodeoxycholic acid, cholic acid methyl ester, or hyocholic acid as substrates. Substrate competition experiments showed that cholic acid 7 alpha-dehydroxylation was reduced by increasing concentrations of chendeoxycholic acid; however, chenodeoxycholic acid 7alpha-dehydroxylation activity was unaffected by increasing concentrations of cholic acid. A 10-fold increase in cholic and 7alpha-dehydroxylation activity occurred during the transition from logarithmic to stationary phase growth whether cells were cultured in the presence or absence of sodium cholate. In the same culture, a similar increase in chenodeoxycholic acid 7alpha-dehydroxylation was detected only in cells cultured in the presence of sodium cholate. These results indicate the possible existence of two independent systems for 7alpha-dehydroxylation in C. Leptum.  相似文献   

18.
A gram-positive, rod-shaped anaerobe (strain F-6) was isolated from soil. This organism was identified by cellular morphology as well as fermentative and biochemical data as Clostridium bifermentans. Strain F-6 formed 7-ketolithocholic acid from chenodeoxycholic acid and 7-ketodeoxycholic acid from cholic acid in whole cell cultures, but did not transform deoxycholic acid, ursodeoxycholic acid, or ursocholic acid. This reaction is reversible. The structures of 7-ketolithocholic acid and 7-ketodeoxycholic acid were verified by mass spectroscopy and by thin-layer chromatography using Komarowsky's spray reagent. When incubated with the strain F-6 glycine and taurine conjugates of the primary bile acids were partially hydrolyzed and transformed to 7-keto products. Optimal yields of 7-ketolithocholic acid and 7-ketodeoxycholic acid were obtained after 78 h of incubation. Culture pH changed with time and was characterized by an initial drop (1.1 pH units) and a gradual increase back to the starting pH (7.3). Corroborating these observations, an inducible, NADP-dependent, 7 alpha-hydroxysteroid dehydrogenase was demonstrated in cell extracts of strain F-6. A trace of NAD-dependent 7 alpha-hydroxysteroid dehydrogenase was also found. A substantial increase in the specific activity of the NADP-dependent 7 alpha-hydroxysteroid dehydrogenase was observed when either 7-ketolithocholic acid, chenodeoxycholic acid, or deoxycholic acid was included in the growth medium. Optimal induction of the NADP-dependent 7 alpha-hydroxysteroid dehydrogenase was achieved with 0.3-0.4 mM 7-ketolithocholic acid. Production of the enzyme(s) was optimal at 6-8 h of growth and the 7 alpha-hydroxysteroid dehydrogenases had a pH optimum of approximately 11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The microbial 7alpha-OH epimerisation of cholic, chenodeoxycholic, and 12-ketochenodeoxycholic acids (7alpha-OH bile acids) with Xanthomonas maltophilia CBS 827.97 to corresponding 7beta-OH derivatives with scarcity of oxygen is described. With normal pressure of oxygen the 7-OH oxidation products are obtained. No biotransformations are achieved in anaerobic conditions. The microbial 7alpha-OH epimerisation is achieved by oxidation of 7-OH function and subsequent reduction. Partial purification, in fact, of the enzymatic fraction revealed the presence of two hydroxysteroid dehydrogenases (HSDH) alpha- and beta-stereospecific together with a glycocholate hydrolase. On the basis of these results a further application is the microbial reduction of 6alpha-fluoro and 6beta-fluoro-3alpha-hydroxy-7-oxo-5beta-cholan-24-oic acid methyl esters to the corresponding 7alpha-OH and 7beta-OH derivatives.  相似文献   

20.
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号