首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium properties of a model lipid bilayer saturated with an n-alkane are presented. The model exhibits a cut-off in absorption as the chain length of the alkane increases which is similar to that observed with black lipid films. The reasons for this cut-off are explored in detail. The model provides qualitative agreement with the experimental enthalpies of transfer of the various alkanes from bulk pure liquid to the bilayer, and with results of electrical compression experiments on black films. Distributions of alkane across the bilayer for different volume fractions in the membrane are presented. For small volume fractions of alkane, its distribution is fairly even across the bilayer and the alkane chains line up essentially parallel to the lipid chains. For larger volume fractions, the alkane distribution is strongly peaked in the center of the membrane. The alkane chains in the outer regions of the membrane line up essentially parallel to the lipid chains, while those in the center are almost completely disordered. The model suggests that the chains (both lipid and alkane) are in an essentially liquid state with no well defined interface between opposing monolayers. It gives a possible explanation for the discrepancy between the experimental free energy of thinning of some lipid membranes formed from the longer chain length alkanes and the theoretical values estimated from Lifshitz's theory.  相似文献   

2.
Bond PJ  Wee CL  Sansom MS 《Biochemistry》2008,47(43):11321-11331
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.  相似文献   

3.
A Kessel  N Ben-Tal    S May 《Biophysical journal》2001,81(2):643-658
The free energy difference associated with the transfer of a single cholesterol molecule from the aqueous phase into a lipid bilayer depends on its final location, namely on its insertion depth and orientation within the bilayer. We calculated desolvation and lipid bilayer perturbation contributions to the water-to-membrane transfer free energy, thus allowing us to determine the most favorable location of cholesterol in the membrane and the extent of fluctuations around it. The electrostatic and nonpolar contributions to the solvation free energy were calculated using continuum solvent models. Lipid layer perturbations, resulting from both conformational restrictions of the lipid chains in the vicinity of the (rigid) cholesterol backbone and from cholesterol-induced elastic deformations, were calculated using a simple director model and elasticity theory, respectively. As expected from the amphipathic nature of cholesterol and in agreement with the available experimental data, our results show that at the energetically favorable state, cholesterol's hydrophobic core is buried within the hydrocarbon region of the bilayer. At this state, cholesterol spans approximately one leaflet of the membrane, with its OH group protruding into the polar (headgroup) region of the bilayer, thus avoiding an electrostatic desolvation penalty. We found that the transfer of cholesterol into a membrane is mainly driven by the favorable nonpolar contributions to the solvation free energy, whereas only a small opposing contribution is caused by conformational restrictions of the lipid chains. Our calculations also predict a strong tendency of the lipid layer to elastically respond to (thermally excited) vertical fluctuations of cholesterol so as to fully match the hydrophobic height of the solute. However, orientational fluctuations of cholesterol were found to be accompanied by both an elastic adjustment of the surrounding lipids and by a partial exposure of the hydrophobic cholesterol backbone to the polar (headgroup) environment. Our calculations of the molecular order parameter, which reflects the extent of orientational fluctuations of cholesterol in the membrane, are in good agreement with available experimental data.  相似文献   

4.
Energetics of inclusion-induced bilayer deformations.   总被引:3,自引:2,他引:1       下载免费PDF全文
The material properties of lipid bilayers can affect membrane protein function whenever conformational changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein's hydrophobic exterior surface and the average thickness of the bilayer's hydrophobic core, using a (liquid-crystal) elastic model of bilayer deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion, splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers. When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A, an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein conformation) 10-fold due to the elastic properties of the bilayer.  相似文献   

5.
We consider a model of bilayer lipid membrane with interdigitation, in which the lipid tails of the opposite monolayers interpenetrate. The interdigitation is modeled by linking tails of the hydrophobic chains in the opposite monolayers within bilayer as a first approximation. This model corresponds to the types of interdigitation that are not related with the areal “hydrophobic” dilation of the membrane. A number of essential thermodynamical characteristics are calculated analytically and compared with the ones of a regular bilayer membrane without interdigitation. Important difference between lateral pressure profiles at the layers interface for linked and regular bilayer models is found. In the linked case, the lateral pressure mid-plane peak disappears, while the entropy decreases and the free energy per chain increases. Within our model we found that in case of elongation of the chains inside a nucleus of, e.g., liquid-condensed phase, homogeneous interdigitation would be more costly for the membrane’s free energy than energy of the hydrophobic mismatch between the elongated chains and the liquid-expanded surrounding. Nonetheless, an inhomogeneous interdigitation along the nucleus boundary may occur inside a “belt” of a width that varies approximately with the hydrophobic mismatch amplitude.  相似文献   

6.
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.  相似文献   

7.
The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy. Thus, delta F obtains a minimum at dP-doL approximately 0. These qualitative interpretations are supported by detailed numerical calculations of the various contributions to the interaction free energy, and of chain conformational properties. The range of the perturbation of lipid order extends typically over few molecular diameters. A rather detailed comparison of our approach to other models is provided in the discussion.  相似文献   

8.
Interaction of bactericidal surfactants N-(1-methyldodecyl)-N, N, N-trimethylammonium bromide (2-ATDBr) and N-(1-methyldodecyl)-N, N-dimethylamine oxide (2-ATDNO) with phospholipid membranes prepared from Escherichia coli -- isolated lipids was studied by ESR spectroscopy using m-doxyl stearic acid (m-DSA, m = 5, 12, 16) and N-cetyl-N, N-dimethyl-N-tempoylammonium bromide spin labels located in different membrane depths. 2-ATDBr was found to be a more potent membrane perturbant than 2-ATDNO both at equal membrane and sample concentrations; this is in compliance with the respective antimicrobial activities of these agents. Using the statistical model of hydrocarbon chains in lipid bilayers, the probabilities of the formation of gauche conformations and the effective energy differences between the trans and gauche conformations were calculated from m-DSA order parameters for two different bilayer regions. Based on these parameters, a molecular model of the location of surfactant molecules in bilayer has been formulated. It has been suggested that at low concentrations the surfactant molecules are located in structural defects between lipid clusters in the bilayer. After filling up these defects, the surfactant molecules penetrate into the clusters between lipid molecules, expand the bilayer laterally and increase the amount of gauche conformations in the hydrocarbon chains in the hydrophobic core of the bilayer.  相似文献   

9.
10.
We present a molecular-level theory for lipid-protein interaction and apply it to the study of lipid-mediated interactions between proteins and the protein-induced transition from the planar bilayer (Lalpha) to the inverse-hexagonal (HII) phase. The proteins are treated as rigid, membrane-spanning, hydrophobic inclusions of different size and shape, e.g., "cylinder-like," "barrel-like," or "vase-like." We assume strong hydrophobic coupling between the protein and its neighbor lipids. This means that, if necessary, the flexible lipid chains surrounding the protein will stretch, compress, and/or tilt to bridge the hydrophobic thickness mismatch between the protein and the unperturbed bilayer. The system free energy is expressed as an integral over local molecular contributions, the latter accounting for interheadgroup repulsion, hydrocarbon-water surface energy, and chain stretching-tilting effects. We show that the molecular interaction constants are intimately related to familiar elastic (continuum) characteristics of the membrane, such as the bending rigidity and spontaneous curvature, as well as to the less familiar tilt modulus. The equilibrium configuration of the membrane is determined by minimizing the free energy functional, subject to boundary conditions dictated by the size, shape, and spatial distribution of inclusions. A similar procedure is used to calculate the free energy and structure of peptide-free and peptide-rich hexagonal phases. Two degrees of freedom are involved in the variational minimization procedure: the local length and local tilt angle of the lipid chains. The inclusion of chain tilt is particularly important for studying noncylindrical (for instance, barrel-like) inclusions and analyzing the structure of the HII lipid phase; e.g., we find that chain tilt relaxation implies strong faceting of the lipid monolayers in the hexagonal phase. Consistent with experiment, we find that only short peptides (large negative mismatch) can induce the Lalpha --> HII transition. At the transition, a peptide-poor Lalpha phase coexists with a peptide-rich HII phase.  相似文献   

11.
An expression is derived for the lipid-mediated intermolecular interaction between protein molecules embedded in a lipid bilayer. It is assumed that protein particles are accommodated by the bilayer, but they distort the lipids in some manner from their equilibrium protein-free configuration. We treat this situation by expanding the free energy density in the plane of the membrane as a Taylor series in some arbitrary parameter and its gradient. Minimization of the total membrane energy for a given particle configuration yields the interparticle interaction energy for that configuration. A test of the model is provided by measurement of the protein-protein pair distribution function from freeze-fracture micrographs of partially aggregated membranes. The measured functions can be simulated by adjustment of two parameters (a) a lipid correlation length that characterizes the distance over which a distortion of the bilayers is transmitted laterally through the bilayer, and (b) a term quantifying the energy of the protein-lipid interaction at the protein-lipid boundary. Correlation lengths obtained by fitting the calculated particle distribution functions to the data are found to be several nanometers. Protein-lipid interaction energies are of the order of a few kT.  相似文献   

12.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

13.
A statistical thermodynamic approach is used to analyze the various contributions to the free energy change associated with the insertion of proteins and protein fragments into lipid bilayers. The partition coefficient that determines the equilibrium distribution of proteins between the membrane and the solution is expressed as the ratio between the partition functions of the protein in the two phases. It is shown that when all of the relevant degrees of freedom (i.e., those that change their character upon insertion into the membrane) can be treated classically, the partition coefficient is fully determined by the ratio of the configurational integrals and thus does not involve any mass-dependent factors, a conclusion that is also valid for related processes such as protein adsorption on a membrane surface or substrate binding to proteins. The partition coefficient, and hence the transfer free energy, depend only on the potential energy of the protein in the membrane. Expressing this potential as a sum of a "static" term, corresponding to the equilibrium (minimal free energy) configuration of the protein in the membrane, and a "dynamical" term representing fluctuations around the equilibrium configuration, we show that the static term contains the "solvation" and "lipid perturbation" contributions to the transfer free energy. The dynamical term is responsible for the "immobilization" free energy, reflecting the loss of translational and rotational entropy of the protein upon incorporation into the membrane. Based on a recent molecular theory of lipid-protein interactions, the lipid perturbation and immobilization contributions are then expressed in terms of the elastic deformation free energy resulting from the perturbation of the lipid environment by the foreign (protein) inclusion. The model is formulated for cylindrically shaped proteins, and numerical estimates are given for the insertion of an alpha-helical peptide into a lipid bilayer. The immobilization free energy is shown to be considerably smaller than in previous estimates of this quantity, and the origin of the difference is discussed in detail.  相似文献   

14.
Alamethicin is a hydrophobic helical peptide of 20 residues, which oligomerizes to form ion-conducting channels in membranes. The behavior of an intact alamethicin channel in POPC bilayers was recently studied, using 2 ns molecular dynamics (MD) simulations of a model hexameric channel. These simulations produced numerous conformations of the channel. In the present study, we used 11 of these channel conformations and carried out continuum-solvent model calculations, similar to those used for the monomers in our previous studies, to investigate the energetics of the channel inside the lipid bilayer. Our results suggest that, out of the 11 channel conformations produced by the MD simulations, only four are stable inside the lipid bilayer, with water-to-membrane free energies of transfer ranging from ~–6 to ~–10 kcal/mol. Analysis of the results suggests two causes for the apparent instability of the remainder of the structures inside the lipid bilayer, both resulting from the desolvation of channel polar groups (i.e. their transfer from the aqueous phase into the bilayer). The first is specific, uncompensated backbone hydrogen bonds, which exist in the region of the channel exposed to the hydrocarbon of the lipid bilayer. The second is exposure of intra-pore water molecules to the surrounding lipid. Thus, the association of these structures with the membrane involves a large electrostatic desolvation free-energy penalty. The apparent conflict between continuum-solvent and MD calculations, and its significance for the interpretation of membrane proteins simulations, are discussed.  相似文献   

15.
An investigation was made of the effects of cholesterol and benzyl alcohol on the partitioning of n-alkanes between lipid bilayer membranes and bulk lipid/alkane solutions (in the torus). Bilayers were formed from solutions containing alkanes of different chain lengths, together with phosphatidylcholine and cholesterol in varying proportions. The partitioning of the alkanes was determined from measurements of the very low frequency (1 Hz) capacitance of the membranes. Perturbation of the internal membrane structure by the inclusion of cholesterol and benzyl alcohol produced very significant changes in the n-alkane partition coefficient, cholesterol causing a decrease and benzyl alcohol an increase in the alkane partitioning into the bilayer. A correlation exists between the effects of these compounds on the alkane partitioning and their effect on the segmental chain order of the acyl chains in the bilayer and this correlation is consistent with a statistical-mechanical model of the lipid/alkane bilayers in the liquid crystalline state. The perturbation by cholesterol and benzyl alcohol of the internal structure of membranes bears on the conflicting reports of the effects of these substances on artificial lipid bilayers and could also be relevant to their known physiological effects.  相似文献   

16.
Gramicidin is a helical peptide, 15 residues in length, which dimerizes to form ion-conducting channels in lipid bilayers. Here we report calculations of its free energy of transfer from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the desolvation free energy were calculated using implicit solvent models, in which gramicidin was described in atomic detail and the hydrocarbon region of the membrane was described as a slab of hydrophobic medium embedded in water. The free energy penalties from the lipid perturbation and membrane deformation effects, and the entropy loss associated with gramicidin immobilization in the bilayer, were estimated from a statistical thermodynamic model of the bilayer. The calculations were carried out using two classes of experimentally observed conformations: a head-to-head dimer of two single-stranded (SS) beta-helices and a double-stranded (DS) intertwined double helix. The calculations showed that gramicidin is likely to partition into the bilayer in all of these conformations. However, the SS conformation was found to be significantly more stable than the DS in the bilayer, in agreement with most of the experimental data. We tested numerous transmembrane and surface orientations of gramicidin in bilayers of various widths. Our calculations indicate that the most favorable orientation is transmembrane, which is indeed to be expected from a channel-forming peptide. The calculations demonstrate that gramicidin insertion into the membrane is likely to involve a significant deformation of the bilayer to match the hydrophobic width of the peptide (22 A), again in good agreement with experimental data. Interestingly, deformation of the bilayer was induced by all of the gramicidin conformations.  相似文献   

17.
All-atom molecular dynamics simulations have been performed on cimetidine in the presence of a palmitoyloleoylphosphatidylcholine (POPC) bilayer. The free energy profile of a single cimetidine molecule passing across POPC bilayer displays a minimum at the interface of bilayer and water. Ten cimetidine molecules were inserted into POPC bilayer to obtain an 8 mol % drug model, and molecular dynamics results showed that cimetidine molecules reside at the polar region of POPC bilayer with sulphur atoms directing to the hydrophobic region. By comparing the one drug model with 8 mol % drug model, one can see that the central barrier to cross the membrane increases while the free energy in bulk water decreases, indicating that the ability of cimetidine passing across the POPC bilayer weakens at increased concentration. In addition, the free energy minimum shifts closer to the hydrophobic core. Our results indicate that with the increased drug concentration, it is more difficult for cimetidine to enter and pass across POPC bilayer.  相似文献   

18.
A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the experimental and simulation data is very good, supporting their use as an efficient tool for analyzing a variety of systems subject to varying conditions (e.g., bilayers of different compositions or thicknesses at different temperatures).  相似文献   

19.
The mutual arrangement of a phospholipid molecule containing a peroxyl radical and a molecule of membrane-acting antioxidant α-tocopherol (vitamin E) in the lipid bilayer has been studied by molecular dynamics simulation. The geometry of molecules in the membrane is revealed at which the hydrogen atom can be transferred from the exocyclic hydroxyl of α-tocopherol to the peroxyl lipid radical. It is shown that, under equilibrium conditions, the peroxidized fatty acid segment rises nearer to the polar surface of the membrane, while α-tocopherol submerges into the hydrophobic part of the lipid bilayer.  相似文献   

20.
Molecular dynamics simulations of a dioleoylphosphocholine (DOPC) lipid bilayer were performed to explore its mechanosensitivity. Variations in the bilayer properties, such as area per lipid, volume, thickness, hydration depth (HD), hydration thickness (HT), lateral diffusion coefficient, and changes in lipid structural order were computed in the membrane tension range 0 to 15dyn/cm. We determined that an increase in membrane tension results in a decrease in the bilayer thickness and HD of ~5% and ~5.7% respectively, whereas area per lipid, volume, and HT/HD increased by 6.8%, 2.4%, and 5% respectively. The changes in lipid conformation and orientation were characterized using orientational (S(2)) and deuterium (S(CD)) order parameters. Upon increase of membrane tension both order parameters indicated an increase in lipid disorder by 10-20%, mostly in the tail end region of the hydrophobic chains. The effect of membrane tension on lipid lateral diffusion in the DOPC bilayer was analyzed on three different time scales corresponding to inertial motion, anomalous diffusion and normal diffusion. The results showed that lateral diffusion of lipid molecules is anomalous in nature due to the non-exponential distribution of waiting times. The anomalous and normal diffusion coefficients increased by 20% and 52% when the membrane tension changed from 0 to 15dyn/cm, respectively. In conclusion, our studies showed that membrane tension causes relatively significant changes in the area per lipid, volume, polarity, membrane thickness, and fluidity of the membrane suggesting multiple mechanisms by which mechanical perturbation of the membrane could trigger mechanosensitive response in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号