首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide bond formation at the peptidyl transferase center on the ribosome is a crucial phenomenon in life systems. In this study, we conceptually propose possible roles of the RNA tetraplex as a scaffold for two aminoacyl minihelices that enable peptide bond formation. The basic rationale of this model is that "parallel" complementary templates composed of only 10-mer nucleotides can position two amino acids in close proximity, which is conceptually and essentially similar to the situation observed in ribosomes. Using supportive experimental data, we discuss the origin and evolution of peptide bond formation in early biological systems.  相似文献   

2.
3.
Summary The specificity of interaction of amino acids with triplets in the acceptor helix stem of tRNA was investigated by means of a statistical analysis of 1400 tRNA sequences. The imprint of a prototypic genetic code at position 3–5 of the acceptor helix was detected, but only for those major amino acids, glycine, alanine, aspartic acid, and valine, that are formed by spark discharges of simple gases in the laboratory. Although remnants of the code at position 3–5 are typical for tRNAs of archaebacteria, eubacteria, and chloroplasts, eukaryotes do not seem to contain this code, and mitochondria take up an intermediary position. A duplication mechanism for the transposition of the original 3–5 code toward its present position in the anticodon stern of tRNA is proposed. From this viewpoint, the mode of evolution of mRNA and functional ribosomes becomes more understandable.Offprint requests to: W. Moller  相似文献   

4.
5.
6.

Background  

The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments.  相似文献   

7.
The modified nucleoside 1-methyladenosine (m1A) is found in the T-loop of many tRNAs from organisms belonging to the three domains of life (Eukaryota, Bacteria, Archaea). In the T-loop of eukaryotic and bacterial tRNAs, m1A is present at position 58, whereas in archaeal tRNAs it is present at position(s) 58 and/or 57, m1A57 being the obligatory intermediate in the biosynthesis of 1-methylinosine (m1I57). In yeast, the formation of m1A58 is catalysed by the essential tRNA (m1A58) methyltransferase (MTase), a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p), whereas in the bacterium Thermus thermophilus the enzyme is a homotetramer of the TrmI polypeptide. Here, we report that the TrmI enzyme from the archaeon Pyrococcus abyssi is also a homotetramer. However, unlike the bacterial site-specific TrmI MTase, the P.abyssi enzyme is region-specific and catalyses the formation of m1A at two adjacent positions (57 and 58) in the T-loop of certain tRNAs. The stabilisation of P.abyssi TrmI at extreme temperatures involves intersubunit disulphide bridges that reinforce the tetrameric oligomerisation, as revealed by biochemical and crystallographic evidences. The origin and evolution of m1A MTases is discussed in the context of different hypotheses of the tree of life.  相似文献   

8.
Primordial germ cells (PGCs) are the founder cells of the germline. Via gametogenesis and fertilisation this lineage generates a new embryo in the next generation. PGCs are also the cell of origin of multilineage teratocarcinomas. In vitro, mouse PGCs can give rise to embryonic germ (EG) cells – pluripotent stem cells that can contribute to primary chimaeras when introduced into pre-implantation embryos. Thus, PGCs can give rise to pluripotent cells in the course of the developmental cycle, during teratocarcinogenesis and by in vitro culture. However, there is no evidence that PGCs can differentiate directly into somatic cell types. Furthermore, it is generally assumed that PGCs do not contribute to chimaeras following injection into the early mouse embryo. However, these data have never been formally published. Here, we present the primary data from the original PGC-injection experiments performed 40 years ago, alongside results from more recent studies in three separate laboratories. These results have informed and influenced current models of the relationship between pluripotency and the germline cycle. Current technologies allow further experiments to confirm and expand upon these findings and allow definitive conclusions as to the developmental potency of PGCs.  相似文献   

9.
The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation.  相似文献   

10.
11.
12.
Trophic cascades: the primacy of trait-mediated indirect interactions   总被引:10,自引:0,他引:10  
Trophic cascades are textbook examples of predator indirect effects on ecological systems. Yet there is considerable debate about their nature, strength and overall importance. This debate stems in part from continued uncertainty about the ultimate mechanisms driving cascading effects. We present a synthesis of empirical evidence in support of one possible ultimate mechanism: the foraging‐predation risk trade‐offs undertaken by intermediary species. We show that simple trade‐off behaviour can lead to both positive and negative indirect effects of predators on plant resources and hence can explain considerable contingency on the nature and strength of cascading effects among systems. Thus, predicting the sign and strength of indirect effect simply requires knowledge of habitat and resource use by prey with regard to predators’ presence, habitat use and hunting mode. The synthesis allows us to postulate a hypothesis for new conceptualization of trophic cascades which is to be viewed as an ultimate trade‐off between intervening species. In this context, different predators apply different rules of engagement based on their hunting mode and habitat use. These different rules then determine whether behavioural effects persist or attenuate at the level of the food chain.  相似文献   

13.
On the evolution of ribosomal RNA   总被引:8,自引:0,他引:8  
Despite the availability of a rapidly growing ribosomal RNA database that now includes organisms in all three primary lines of descent (eubacteria, archaebacteria, and eukaryotes), theoretical treatment of the evolution of the ribosomal RNAs has lagged behind that of the protein genes. In this paper a theory is developed that applies current views of protein gene evolution to the ribosomal RNAs. The major topics addressed are the variability in size, gene arrangement, and processing of the rRNAs among the three primary lines of descent. Among the conclusions are that the rRNAs of eukaryotes retain some primitive features that were probably present in the rRNAs of the earliest cell (the progenote) and that the genes coding for the three major rRNA species were probably originally unlinked.  相似文献   

14.
15.
16.
17.
18.
On the occurrence of the T-loop RNA folding motif in large RNA molecules   总被引:4,自引:0,他引:4  
The T-loop RNA folding motif may be considered as a five-nucleotide motif composed of a U-turn flanked by a noncanonical base pair. It was recently proposed that the flanking noncanonical base pair is always a UA trans Watson-Crick/Hoogsteen base pair stacked on a Watson-Crick base pair on one side. Here we show that structural analysis of several large RNA molecules, including the recently solved crystal structure of the specificity domain of Bacillus subtilis RNase P, combined with sequence analysis, indicates a broader sequence consensus for the motif. Additionally, we show that the flanking base pair does not necessarily stack on a Watson-Crick base pair and the 3' terminus of the five-nucleotide motif is often followed by a sharp turn in the phosphate backbone rather than just a bulged base or bases.  相似文献   

19.
On the stability of phage messenger RNA   总被引:4,自引:0,他引:4  
  相似文献   

20.
Nuclear envelopes were isolated from rat-liver nuclei. Nuclear envelope-associated RNA was isolated and hybridized to filter-bound DNA in the presence of competing RNA populations. Cytoplasmic RNA did not effectively compete for DNA binding sites, while nuclear RNA did. The results indicate a high degree of complexity for nuclear envelope-associated RNA, and are compatible with the idea that hnRNA may be processed after attachment to the nuclear envelope (or nuclear matrix).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号