共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypeptide synthesis and phosphorylation in Epstein-Barr virus-infected cells 总被引:1,自引:10,他引:1 下载免费PDF全文
Epstein-Barr virus superinfection of the human lymphoblastoid cell line Raji, a Burkitt lymphoma-derived line that contains Epstein-Barr virus genomes in an episomal form, results in the sequential synthesis of 29 detectable proteins, which range in molecular weight from approximately 155,000 to 21,000, and in the shutoff of the bulk of host protein synthesis within 6 to 9 h after infection. There are three classes of virus-induced proteins; these are an early class, consisting of eight proteins synthesized by 6 h postinfection, an intermediate class, containing two proteins synthesized 9 h postinfection, and a late class, consisting of five proteins synthesized 12 h postinfection. In addition, there is a fourth class of polypeptides, called persistent, that are found both before and after superinfection. The rates of synthesis of the proteins fall into three patterns; these are pattern A, in which the rate of synthesis decreases, pattern B, in which the rate of synthesis remains steady, and pattern C, in which the rate of synthesis increases after the initial appearance of the polypeptide. Both 9-(2-hydroxy-ethoxymethyl)guanine (acyclovir) and phosphonoacetic acid inhibit the appearance of one intermediate protein and at least three late proteins. Seven polypeptides are phosphorylated at different times after infection. 相似文献
2.
PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins 下载免费PDF全文
Latent membrane protein 2A (LMP2A) is expressed in latent Epstein-Barr virus (EBV) infection. We have demonstrated that Nedd4 family ubiquitin-protein ligases (E3s), AIP4, WWP2/AIP2, and Nedd4, bind specifically to two PY motifs present within the LMP2A amino-terminal domain. In this study, LMP2A PY motif mutant viruses were constructed to investigate the role of the LMP2A PY motifs. AIP4 was found to specifically associate with the LMP2A PY motifs in EBV-transformed lymphoblastoid cell lines (LCLs), extending our original observation to EBV-infected cells. Mutation of both of the LMP2A PY motifs resulted in an absence of binding of AIP4 to LMP2A, which resulted in an increase in the expression of Lyn and the constitutive hyperphosphorylation of LMP2A and an unknown 120-kDa protein. In addition, there was a modest increase in the constitutive phosphorylation of Syk and an unidentified 60-kDa protein. These results indicate that the PY motifs contained within LMP2A are important in regulating phosphorylation in EBV-infected LCLs, likely through the regulation of Lyn activity by specifically targeting the degradation of Lyn by ubiquination by Nedd4 family E3s. Despite differences between PY motif mutant LCLs and wild-type LCLs, the PY motif mutants still exhibited a block in B-cell receptor (BCR) signal transduction as measured by the induction of tyrosine phosphorylation and BZLF1 expression following BCR activation. EBV-transformed LCLs with mutations in the PY motifs were not different from wild-type LCLs in serum-dependent cell growth. Protein stability of LMP1, which colocalizes with LMP2A, was not affected by the LMP2A-associated E3s. 相似文献
3.
4.
The parasitic protozoan Leishmania is the etiological agent of human leishmaniasis worldwide. It undergoes cellular differentiation from the sandfly promastigote form into amastigotes within mammalian macrophages, a process that is essential for its intracellular survival. Here, we characterized the Leishmania infantum PERK eIF2alpha kinase homologue and addressed its role in the parasite's cytodifferentiation. We show that Leishmania PERK is an endoplasmic reticulum (ER) transmembrane protein that largely colocalizes with the ER BiP chaperone. The Leishmania PERK catalytic kinase domain undergoes autohyperphosphorylation and phosphorylates the translation initiation factor 2-alpha subunit (eIF2alpha) in vitro at threonine 166. We also report that PERK is post-translationally regulated specifically in the intracellular stage of the parasite or under ER stress, most likely through extensive autohyperphosphorylation. We have generated a PERK dominant negative mutant overexpressing a truncated PERK protein lacking the N-terminal luminal domain and showed that this mutant is impaired in eIF2alpha phosphorylation in response to ER stress or during amastigote differentiation. Most importantly, we showed that lack of eIF2alpha phosphorylation markedly delays the Leishmania differentiation process towards amastigote forms both in parasites grown axenically or within macrophages. These data highlight the importance of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation in the intracellular development of Leishmania. 相似文献
5.
Fritsch RM Schneider G Saur D Scheibel M Schmid RM 《The Journal of biological chemistry》2007,282(31):22551-22562
The integrated stress response (ISR) integrates a broad range of environmental and endogenous stress signals to the phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2 alpha). Although intense or prolonged activation of this pathway is known to induce apoptosis, the molecular mechanisms coupling stress-induced eIF2 alpha phosphorylation to the cell death machinery have remained incompletely understood. In this study, we characterized apoptosis initiation in response to classical activators of the ISR (tunicamycin, UVC, elevated osmotic pressure, arsenite). We found that all applied stress stimuli activated a mitochondrial pathway of apoptosis initiation. Rapid and selective down-regulation of the anti-apoptotic BCL-2 family protein MCL-1 preceded the activation of BAX, BAK, and caspases. Stabilization of MCL-1 blocked apoptosis initiation, while cells with reduced MCL-1 protein content were strongly sensitized to stress-induced apoptosis. Stress-induced elimination of MCL-1 occurred with unchanged protein turnover and independently of MCL-1 mRNA levels. In contrast, stress-induced phosphorylation of eIF2 alpha at Ser(51) was both essential and sufficient for the down-regulation of MCL-1 protein in stressed cells. These findings indicate that stress-induced phosphorylation of eIF2 alpha is directly coupled to mitochondrial apoptosis regulation via translational repression of MCL-1. Down-regulation of MCL-1 enables but not enforces apoptosis initiation in stressed cells. 相似文献
6.
7.
Squatrito M Mancino M Sala L Draetta GF 《Biochemical and biophysical research communications》2006,344(3):859-868
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control. 相似文献
8.
DSG (15-deoxyspergualin), an immunosuppressant with tumoricidal properties, binds potently to the regulatory C-terminal 'EEVD' motif of Hsps (heat-shock proteins). In the present study we demonstrate that DSG inhibits eukaryotic protein synthesis by sequestering Hsp70 which is required for maintaining HRI (haem-regulated inhibitor), a kinase of the eIF2alpha (eukaryotic initiation factor 2alpha), inactive. DSG stalled initiation of protein synthesis through phosphorylation of HRI and eIF2alpha. Addition of a recombinant eIF2alpha (S51A) protein, which lacks the phosphorylation site, lowered the inhibitory potential of DSG in reticulocyte lysate. The inhibitory effect of DSG was also attenuated in HRI knockdown cells. Moreover, exogenous addition of Hsp70 or the peptide 'EEVD' reversed the inhibitory effect of DSG. Interestingly, the inhibitory effect of DSG in different mammalian cancer cells was found to negatively correlate with the amount of Hsp70 expressed in the cells, emphasizing the link with Hsp70 in DSG inhibition of eukaryotic translation. 相似文献
9.
10.
EB病毒LMP1 CTAR1、CTAR2的表达促使人鼻咽癌细胞HNE2增殖 总被引:1,自引:0,他引:1
探讨EB病毒LMP1不同结构域在鼻咽癌中的致瘤作用,为阐明鼻咽癌分子发病机理,寻找治疗鼻咽癌的分子靶提供实验依据。以转染空白载体为对照,利用电穿孔转染方法,建立稳定表达LMP1不同突变体的鼻咽癌细胞系HNE2-LMP1(1~815)、HNE2-LMP1(1~231)、HNE2-LMP1△187~351,并以这些细胞系为材料,用MTT法检测增殖期活细胞,BrdU掺入法检测细胞增殖状况,比较各组细胞的软琼脂集落形成率和裸鼠成瘤能力,以观察LMP1不同的结构域对鼻咽癌细胞生长的影响。LMP1(1~231)和LMP1△187~351在体外明显促进HNE2细胞增殖,HNE2-LMP1(1~231)、HNE2-LMP1△187~351平均吸光度(A)比值、BrdU掺入率、软琼脂集落形成率均高于HNE2-pSG5与HNE2(P<0 01),而HNE2-LMP1(1~187)与HNE2-pSG5、HNE2相比,这些指标无明显差别。HNE2-LMP1△187~351和HNE2-LMP1(1~231)的裸鼠成瘤潜伏期、倍增时间与平均瘤重明显高于HNE2-pSG5鼻咽癌细胞系,其差异有显著的统计学意义(P<0 05)。而HNE2-LMP1(1~187)、HNE2-pSG5和HNE2鼻咽癌细胞系在潜伏期、倍增时间与平均瘤重方面两两比较,差异无显著的统计学意义(P>0 05)。EB病毒LMP1CTAR1和CTAR2对HNE2细胞生长有明显促进作用,提示EB病毒LMP1可能在鼻咽癌的发生发展中起着重要的作用。 相似文献
11.
唐微朱建思 《现代生物医学进展》2012,12(7):1394-1397
EB病毒(Epstein-Barr virus,EBV)是具有致瘤潜能的疱疹病毒,与多种恶性肿瘤的发生相关。EB病毒编码的潜伏性膜蛋白1(Latent membrane protein-1,LMP1)作为其主要的致瘤蛋白,能通过细胞内多种信号传导通路,调节和控制细胞的生长、增殖、分化、迁移与凋亡,从而在癌变的发生和发展过程中发挥重要的作用。本文主要就LMP1的结构、生物学功能、介导的信号通路及其与肿瘤关系的相关进展做一阐述。 相似文献
12.
The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha. 相似文献
13.
Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation 下载免费PDF全文
McInerney GM Kedersha NL Kaufman RJ Anderson P Liljeström P 《Molecular biology of the cell》2005,16(8):3753-3763
Alphavirus infection results in the shutoff of host protein synthesis in favor of viral translation. Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha). Infection of mouse embryo fibroblasts (MEFs) expressing a nonphosphorylatable mutant of eIF2alpha does not result in efficient shutoff, despite efficient viral protein production. Furthermore, we show that the SFV translation enhancer element counteracts the translation inhibition imposed by eIF2alpha phosphorylation. In wild-type MEFs, viral infection induces the transient formation of stress granules (SGs) containing the cellular TIA-1/R proteins. These SGs are disassembled in the vicinity of viral RNA replication, synchronously with the switch from cellular to viral gene expression. We propose that phosphorylation of eIF2alpha and the consequent SG assembly is important for shutoff to occur and that the localized SG disassembly and the presence of the enhancer aid the SFV mRNAs to elude general translational arrest. 相似文献
14.
15.
O'Loghlen A Pérez-Morgado MI Salinas M Martín ME 《Archives of biochemistry and biophysics》2003,417(2):194-202
Oxidative inactivation of protein tyrosine phosphatases and calcineurin is a well established mechanism; however, little information with regard to the effect of oxidants on PP1 and PP2A activity is available. Herein, we show that PP1 activity is inhibited by H(2)O(2) treatment in differentiated PC12 cells both in vitro and in vivo experiments. Thiol-antioxidant N-acetyl-cysteine (NAC) and reduced glutathione (GSH), when added in vitro to lysates from H(2)O(2)-treated cells, reversed PP1 inhibition. H(2)O(2) treatment increased eIF2 alpha phosphorylated levels (eIF2 alpha P) in a time- and dose-dependent fashion and promoted protein synthesis inhibition. Interestingly, NAC pretreatment protected cells from H(2)O(2)-induced PP1 inactivation and, consequently, it abolished increased H(2)O(2)-induced eIF2 alpha phosphorylation and protein synthesis inhibition. In addition, PP1 inhibitor tautomycin prevented both NAC-induced PP1 reactivation and eIF2 alpha P dephosphorylation in H(2)O(2)-treated cells. Taken together, our findings support a role for PP1 in eIF2 alpha phosphorylation and oxidative stress-triggered translation down regulation. 相似文献
16.
17.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2alpha in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2alpha. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2alpha phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2alpha phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2alpha phosphorylation; futhermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eLF2alpha. Zinc (II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2alpha phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132. 相似文献
18.
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies. 相似文献
19.
Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. 总被引:31,自引:8,他引:23 下载免费PDF全文
The ribonucleoprotein (RNP) particles containing the Epstein-Barr virus-associated small RNAs EBER1 and EBER2 were analyzed to determine their RNA secondary structures and sites of RNA-protein interaction. The secondary structures were probed with nucleases and by chemical modification with single-strand-specific reagents, and the sites of modification or cleavage were mapped by primer extension. These data were used to develop secondary structures for the two RNAs, and likely sites of close RNA-protein contact were identified by comparing modification patterns for naked RNA and RNA in RNP particles. In addition, sites of interaction between each Epstein-Barr virus-encoded RNA (EBER) and the La antigen were identified by analyzing RNA fragments resistant to digestion by RNase A or T1 after immunoprecipitation by an anti-La serum sample from a lupus patient. Our results confirm earlier findings that the La protein binds to the 3' terminus of each molecule. Possible functions for the EBER RNPs are discussed. 相似文献
20.
Interferons induce tyrosine phosphorylation of the eIF2alpha kinase PKR through activation of Jak1 and Tyk2 下载免费PDF全文
The interferon (IFN)-inducible, double-stranded RNA activated protein kinase (PKR) is a dual-specificity kinase, which has an essential role in the regulation of protein synthesis by phosphorylating the translation eukaryotic initiation factor 2 (eIF2). Here, we show the tyrosine (Tyr) phosphorylation of PKR in response to type I or type II IFNs. We show that PKR physically interacts with either Jak1 or Tyk2 in unstimulated cells and that these interactions are increased in IFN-treated cells. We also show that PKR acts as a substrate of activated Jaks, and is phosphorylated at Tyr 101 and Tyr 293 both in vitro and in vivo. Moreover, we provide strong evidence that both the induction of eIF2alpha phosphorylation and inhibition of protein synthesis by IFN are impaired in cells lacking Jak1 or Tyk2, which corresponds to a lack of induction of PKR tyrosine phosphorylation. We conclude that PKR tyrosine phosphorylation provides an important link between IFN signalling and translational control through the regulation of eIF2alpha phosphorylation. 相似文献