首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary The human T-cell receptor gamma gene region spans 160 kb genomic DNA. Restriction fragment length polymorphisms (RFLPs) have been previously documented for the constant region (TRGC) genes, the joining (TRGJ) segments and the variable (TRGV) genes. We have recently defined the alleles of the T-cell receptor gamma V, J and C genes and we have described seven haplotypes of the V gamma subgroup I genes characterized either by RFLPs or by deletion or insertion of V gamma genes. The number of VI genes may vary from 7 to 10 per haploid genome, the 9-gene haplotype being the most frequent. Allelic fragments can unambiguously characterize the TRGC2 gene with duplication or triplication of the exon 2. These alleles and haplotypes have been analyzed in four different populations (French, Lebanese, Tunisian and Black African). In this paper, we compare these allele and haplotype frequencies with those found in a Chinese population and we describe new TRGV allelic restriction fragments found only in the Chinese samples. These results and the previous data demonstrate the flexibility of the human T cell receptor gamma locus and the importance of unequal crossing-overs in the evolution of that locus. Moreover, they underline the importance of studying these polymorphisms in population genetics.  相似文献   

2.
3.
The human T-cell receptor gamma (TRG) genes   总被引:7,自引:0,他引:7  
The human T-cell receptor gamma (TRG) chain genes, like those encoding the T-cell receptor alpha- and beta-polypeptides, undergo rearrangements specifically in T cells. The human TRG locus, which has been completely mapped, is composed of two constant region genes (TRGC), five joining segments (TRGJ) and at least 14 variable gamma-genes (TRGV). Eight variable genes are functional and belong to four different subgroups. The product of the rearranged TRG gene is the gamma-chain which is expressed, along with the delta-chain, at the surface of a subset of T lymphocytes. Although some gamma delta + cells display a cytolytic activity, their precise function remains to be elucidated.  相似文献   

4.
N Takahashi  S Ueda  M Obata  T Nikaido  S Nakai  T Honjo 《Cell》1982,29(2):671-679
We have cloned five human immunoglobulin gamma genes from a fetal liver gene library. Four of them encode the known human immunoglobulin gamma chains gamma 1, gamma 2, gamma 3 and gamma 4. A fifth gamma gene seems to be a pseudogene. Nucleotide sequence determination demonstrates that the gamma 3 gene contains four separate hinge exons. Comparison of these hinge exons with those of the other gamma genes indicates that the first hinge exon is homologous to that of the pseudogene, and that the other three hinge exons are homologous to that of the gamma 1 gene, suggesting that the gamma 3 gene ancestor is a hybrid gene created by unequal crossing-over between the ancestral gamma 1 and psi gamma genes. Amplification of the gamma 1-type hinge exon probably followed to complete the gamma 3 gene. This hypothesis inevitably postulates the gene order 5'-gamma 1-gamma 3-psi gamma-3'. Cloning of overlapping chromosomal segments demonstrates that the gamma 2 gene is located 19 kb 5' to the gamma 4 gene. These analyses indicate that the human gamma-gene family has evolved by several types of DNA rearrangemet, including duplication of a complete gene; duplication of a hinge exon; and reassortment of exons by unequal cross-over between two adjacent genes.  相似文献   

5.
M P Lefranc 《Biochimie》1988,70(7):901-908
The human T-cell Rearranging Gamma genes or T-cell Receptor Gamma (TRG) chain genes, like those encoding the T-cell Receptor (TcR) alpha and beta polypeptides, undergo rearrangements specifically in T-cells. The human TRG locus which has been mapped to chromosome 7 (7p15) is composed of 2 constant region genes (TRGC), 5 joining segments (TRGJ) and at least 14 variable gamma genes (TRGV). 8 variable genes are functional and belong to 4 different subgroups. Based on restriction fragments, the TRG rearrangements can be assigned to given V and J segments, in normal T-cells, T leukemias and lymphomas. The product of the rearranged TRG gene is the gamma chain which is expressed at the surface of a subset of CD3+4-8- T lymphocytes lacking the conventional receptor alpha beta. Structural differences exist between the different 'gamma T-cell receptors', the gamma and delta polypeptides being disulfide or non-disulfide linked. Although the TRG+ cells display a cytolytic activity, their precise function remains to be elucidated.  相似文献   

6.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

7.
8.
9.
GCAP1 and GCAP2 are related Ca2+-binding proteins that activate photoreceptor guanylate cyclase(s). We showed previously that the human GCAP1 gene, consisting of four exons, is located at 6p21.1 (locus designation GUCA). To identify the chromosomal location of the GCAP2 gene, we first cloned its cDNA and determined its intron–exon distribution by PCR analysis. The results show that the introns of the GCAP2 gene are positioned exactly as in the GCAP1 gene and are nearly double in size. Sequence similarity between the two genes, however, is limited to portions of exons 1 and 2. The GCAP1 and GCAP2 genes are transcribed into single mRNA species (1.7 and 2.2 kb, respectively) and are detectable only in the retina by Northern blotting. The GCAP2 gene was found by somatic human–hamster hybrid panel analysis and FISH to reside at GUCA in a region indistinguishable from that of GCAP1. PCR analysis with exon 4-specific primers showed that the genes are in a tail-to-tail array less than 5 kb apart and altogether span less than 20 kb of genomic DNA. The identical gene structures and loci of GCAP1 and GCAP2, and the identical function of the gene products, are consistent with a gene duplication event.  相似文献   

10.
The structural organization of the two closely related vitellogenin genes A1 and A2 has been determined and compared by electron microscopy. In both genes the mRNA-coding sequence of 6 kb is interrupted 33 times, leading to a total gene length of 21 kb for gene A1 and 16 kb for gene A2. Thus both genes have a mean exon length of 0.175 kb, while the mean intron length is 0.45 kb in gene A1 and 0.31 kb in gene A2. Because the introns interrupt the structural sequence at homologous positions in genes A1 and A2, we suggest that these two genes are the products of a duplication of an ancestral gene which had an intron-exon arrangement similar to that of the extant genes. Since the duplication event, the sequence and length of the analogous introns have changed rapidly, whereas homologous exons have diverged to an extent of only 5% of their sequences. The results suggest different mechanisms of evolution for exons and introns. While the exons evolved primarily by point mutations, such mutations, as well as deletion, insertion and duplication events, were important in the evolution of the introns.  相似文献   

11.
12.
13.
The human tissue kallikrein (KLK) family of serine proteases, which is important in post-translational processing events, currently consists of just three genes-tissue kallikrein (KLK1), KLK2, and prostate-specific antigen (PSA) (KLK3)-clustered at chromosome 19q13. 3-13.4. We identified an expressed sequence tag from an endometrial carcinoma cDNA library with 50% identity to the three known KLK genes. Primers designed to putative exon 2 and exon 3 regions from this novel kallikrein-related sequence were used to polymerase chain reaction-screen five cosmids spanning 130 kb around the KLK locus on chromosome 19. This new gene, which we have named KLK4, is 25 kb downstream of the KLK2 gene and follows a region that includes two other putative KLK-like gene fragments. KLK4 spans 5.2 kb, has an identical genomic structure-five exons and four introns-to the other KLK genes and is transcribed on the reverse strand, in the same direction as KLK1 but opposite to that of KLK2 and KLK3. It encodes a 254-amino acid prepro-serine protease that is most similar (78% identical) to pig enamel matrix serine protease but is also 37% identical to PSA. These data suggest that the human kallikrein gene family locus on chromosome 19 is larger than previously thought and also indicate a greater sequence divergence within this family compared with the highly conserved rodent kallikrein genes.  相似文献   

14.
Overlapping recombinant clones that appear to encompass the entire renin gene, named Ren 1, have been isolated from a library of BALB/c mouse genomic DNA fragments. Based on restriction endonuclease mapping and DNA sequence analysis, Ren 1 spans 9.6 kb and contains nine exons interrupted by eight intervening sequences of highly variable size. The first exon, encoding the signal peptide of preprorenin, is separated from the eight following exons by a 3-kb intron. These eight exons are organized into two clusters of four separated by a 2-kb intron. DNA stretches encoding the aspartyl residues, which are part of the active site of renin, are located at homologous positions in both clusters. Our results show that aspartyl protease genes have arisen by duplication and fusion of an ancestral gene containing five exons. The estimated date of the duplication event of the mouse renin genes Ren 1 and Ren 2 is discussed.  相似文献   

15.
16.
The genomic organization and expression of genes of the T-cell receptor gamma (TRG) locus are described for mice and humans, but not for species such as rabbits (Oryctolagus cuniculus), in which T cells compose a sizeable proportion of T cells in the periphery. We cloned 200 kb of the rabbit TRG locus and determined the TRGV gene usage in adult and newborn rabbits by RT-PCR. We identified two TRGJ genes, one TRGC gene, and 22 TRGV genes, all of which encoded functional variable regions. One TRGV gene is the unique member of the TRGV2 subgroup, whereas the other genes belong to the TRGV1 subgroup. Evolutionary analyses of TRGV1 genes identified three distinct groups that can be explained by separate duplication events in the rabbit genome. Evidence of gene conversion between TRGV1.1 and TRGV1.6 was observed. Both TRGV1 and TRGV2 subgroup genes were expressed in the spleen, intestine, and appendix of adult rabbits, and the repertoire of TRGV genes expressed in these tissues was similar. In these tissues from newborns, and in skin from adults, only the genes from the TRGV1 subgroup were expressed. Greater TRGV-J junctional diversity was found in tissues from adult compared to newborn rabbits. Our analyses indicate rabbits have a larger germ line encoded TRG repertoire compared with that of mice and humans. In addition, we found TRGV gene usage is alike in most tissues of rabbits similar to that found in humans but in contrast to that found in mice.Electronic SupplementaryMaterial Supplementary material is available for this article at The nucleotide sequence data reported in this article have been submitted to GenBank and are assigned the accession numbers AY748325–AY748348  相似文献   

17.
ThelpA1/Gpcr26locus encodes the first cloned and identified G-protein-coupled receptor that specifically interacts with lysophosphatidic acid. A murine full-length cDNA of size consistent with that seen on Northern blots (3.7 kb) was determined using 3′ rapid amplification of cDNA ends. Analysis of genomic clones revealed that the gene is divided into five exons, with one intron inserted in the coding region for transmembrane domain VI and one exon encoding the divergent 5′ sequence in another published cDNA clone variant (orphan receptor mrec1.3). This structure differs from the intronless coding region for a homologous receptor,Edg1,but is identical to another more similar orphan receptor (lpA2) that has been deposited with GenBank. Using backcross analysis, both exons 1 and 4 mapped to a proximal region of murine Chromosome 4 indistinguishable from the vacillans gene. Exon 4 also mapped to a second locus on proximal Chromosome 6 inMus spretus,and this partial duplication was confirmed by Southern blot. The genomic structure indicates a distinct, divergent evolutionary lineage for thevzg-1/lpA1subfamily of receptors compared to those of homologous orphan receptor genes.  相似文献   

18.
19.
The gene encoding the beta chain of the human T-cell receptor for antigen is composed of variable (V), diversity (D), joining (J), and constant (C) gene segments which undergo specific rearrangements during T-lymphocyte ontogeny. Southern blot analyses of seven human T-cell tumor lines and normal human T-lymphocyte clones revealed that most of these T-cell lines rearrange their Ti beta genes differently. The T-cell tumor line HPB-MLT rearranges and transcribes both of its Ti beta genes. Cloning and sequencing of the Ti beta cDNAs corresponding to these rearrangements revealed that one of the rearranged Ti beta genes is defective, while the other is functional and corresponds to the Ti beta protein expressed on the surface of these cells. Thus, this cell line displays a pattern of allelic exclusion of Ti beta gene expression. A comparison of four C beta 2-containing Ti beta cDNAs from three different cell lines revealed that three of the four utilize the same J beta 2.5 gene segment joined to different D beta and V beta genes, suggesting that there may be preferential use of this J gene during J beta 2 rearrangements. Hybridization analyses with probes for the alpha and beta genes of the T-cell receptor and the T-cell-specific T gamma gene revealed that HPB-MLT cells appear to express approximately equivalent amounts of RNA corresponding to each of the rearranged Ti alpha and Ti beta genes. However, they express a much lower level of T gamma RNA.  相似文献   

20.
Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder that has been mapped to 7p13. We have investigated two patients with GCPS and a cytogenetically visible microdeletion of the short arm of chromosome 7 with gene probes that have been assigned close to the proposed Greig locus. Deletion breakpoints were determined from high-resolution G- and R-banded chromosomes. In patient BC with a de novo deletion (7p12.3-7p14.2) we have found a loss of the genomic region containing the T-cell receptor gamma (TCRG) gene cluster, whereas the other patient IR with a deletion (7p11.2-7p13) due to a de novo translocation was apparently normal for this region. Gene dosage analysis revealed a loss of the phosphoglycerate mutase muscular form (PGAM2) gene locus in both patients. Hox 1.4 and interferon-beta 2 (IFNB2) showed a normal gene dosage. Our investigations revealed the following ordering and assignments of the studied genes: PGAM2 and GCPS in 7p12.3-13; TCRG in the distal part of 7p13-7p14.2; Hox 1.4 and IFNB2 distal to 7p14.2. Our results suggest a location of the TCRG gene more proximal than that reported previously. Furthermore, we were able to exclude the Hox 1.4 gene from involvement in the pathogenesis of GCPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号