首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytolethal distending toxins (CDTs) block cell division by arresting the eukaryotic cell cycle at G2/M. Although previously not recognized in standard BLAST searches, a position-specific iterated (PSI) BLAST search of the protein data bank using CDT polypeptides as query sequences indicated that CdtB bears significant position-specific homology to type I mammalian DNases. The PSIBLAST sequence alignment reveals that residues of DNase I involved in phosphodiester bond hydrolysis (His134 and His252) are conserved in CdtB as well as their respective hydrogen bond pairs (Glu78 and Asp212). CdtB also contains a pentapeptide motif found in all DNase I enzymes. Further, crude CDT preparations possess detectable DNase activity not associated with identical preparations from control cells. Five CdtB mutations in amino acids corresponding to DNase I active site residues were prepared and expressed together with wild-type CdtA and CdtC polypeptides. Mutation in four of the five DNase-specific active site residues resulted in CDT preparations that lacked DNase activity and failed to induce cellular distension or arrest division of HeLa cells. The fifth mutation, Glu86 (Glu78 in DNase I), retained the ability to induce a moderate level of cell cycle arrest and displayed reduced DNase activity relative to wild-type CDT. Together, these data suggest that the CDT holotoxin has intrinsic DNase activity that is associated with the CdtB polypeptide and that this DNase activity may be responsible for the CDT-induced cell cycle arrest.  相似文献   

2.
Previous structural and mutational studies of bovine pancreatic deoxyribonuclease I (bpDNase I) have demonstrated that the active site His134 and His252 played critical roles in catalysis. In our present study, mutations of these two His residues to Gln, Ala or Gly reduced the DNase activity by a factor of four to five orders of magnitude. When imidazole or primary amines were added exogenously to the Ala or Gly mutants, the residual DNase activities were substantially increased by 60-120-fold. The rescue with imidazole was pH- and concentration-dependent. The pH-activity profiles showed nearly bell-shaped curves, with the maximum activity enhancement for H134A at pH 6.0 and that for H252A at pH 7.5. These findings indicated that the protonated form of imidazole was responsible for the rescue in H134A, and the unprotonated form was for that in H252A, prompting us to assign unambiguously the roles for His134 as a general acid, and His252 as a general base, in bpDNase I catalysis.  相似文献   

3.
Human deoxyribonuclease I (DNase I), an enzyme used to treat cystic fibrosis patients, has been systematically analyzed by site-directed mutagenesis of residues at the DNA binding interface. Crystal structures of bovine DNase I complexed with two different oligonucleotides have implicated the participation of over 20 amino acids in catalysis or DNA recognition. These residues have been classified into four groups based on the characterization of over 80 human DNase I variants. Mutations at any of the four catalytic amino acids His 134, His 252, Glu 78, and Asp 212 drastically reduced the hydrolytic activity of DNase I. Replacing the three putative divalent metal ion-coordinating residues Glu 39, Asp 168, or Asp 251 led to inactive variants. Amino acids Gln 9, Arg 41, Tyr 76, Arg 111, Asn 170, Tyr 175, and Tyr 211 were also critical for activity, presumably because of their close proximity to the active site, while more peripheral DNA interactions stemming from 13 other positions were of minimal significance. The relative importance of these 27 positions is consistent with evolutionary relationships among DNase I across different species, DNase I-like proteins, and bacterial sphingomyelinases, suggesting a fingerprint for a family of DNase I-like proteins. Furthermore, we found no evidence for a second active site that had been previously implicated in Mn2+-dependent DNA degradation. Finally, we correlated our mutational analysis of human DNase I to that of bovine DNase I with respect to their specific activity and dependence on divalent metal ions.  相似文献   

4.
Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.  相似文献   

5.
6.
Endopeptidase EC 3.4.24.15 (EP24.15) is a zinc metalloendopeptidase that is broadly distributed within the brain, pituitary, and gonads. Its substrate specificity includes a number of physiologically important neuropeptides such as neurotensin, bradykinin, and gonadotropin-releasing hormone, the principal regulatory peptide for reproduction. In studying the structure and function of EP24.15, we have employed in vitro mutagenesis and subsequent protein expression to genetically dissect the enzyme and allow us to glean insight into the mechanism of substrate binding and catalysis. Comparison of the sequence of EP24.15 with bacterial homologues previously solved by x-ray crystallography and used as models for mammalian metalloendopeptidases, indicates conserved residues. The active site of EP24.15 exhibits an HEXXH motif, a common feature of zinc metalloenzymes. Mutations have confirmed the importance, for binding and catalysis, of the residues (His473, Glu474, and His477) within this motif. A third putative metal ligand, presumed to coordinate directly to the active site zinc ion in concert with His473 and His477, has been identified as Glu502. Conservative alterations to these residues drastically reduces enzymatic activity against both a putative physiological substrate and a synthetic quenched fluorescent substrate as well as binding of the specific active site-directed inhibitor, N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, the binding of which we have shown to be dependent upon the presence, and possibly coordination, of the active site zinc ion. These studies contribute to a more complete understanding of the catalytic mechanism of EP24.15 and will aid in rational design of inhibitors and pharmacological agents for this class of enzymes.  相似文献   

7.
8.
Eucaryotic, viral, and bacteriophage DNA polymerases of the alpha-like family share blocks of sequence similarity, the most conserved of which has been designated region I. Region I includes a YGDTDS motif that is almost invariant within the alpha-like family and that is similar to a motif conserved among RNA-directed polymerases and also includes adjacent amino acids that are more moderately conserved. To study the function of these conserved amino acids in vivo, site-specific mutagenesis was used to generate herpes simplex virus region I mutants. A recombinant virus constructed to contain a mutation within the nearly invariant YGDTDS motif was severely impaired for growth on Vero cells which do not contain a viral polymerase gene. However, three recombinants constructed to contain mutations altering more moderately conserved residues grew on Vero cells and exhibited altered sensitivities to nucleoside and PPi analogs and to aphidicolin. Marker rescue and DNA sequencing of one such recombinant demonstrated that the region I alteration confers the altered drug sensitivity phenotype. These results indicate that this region has an essential role in polymerase function in vivo and is involved directly or indirectly in drug and substrate recognition.  相似文献   

9.
《Journal of molecular biology》1996,264(5):1154-1163
Bovine pancreatic deoxyribonuclease I (DNase I) is a well characterised endonuclease which cleaves double-stranded DNA to yield 5′ phosphory lated polynucleotides. Co-crystal structures of DNase I with two different oligonucleotides have revealed the presence of several residues (R9, E78, H134, D168, D212 and H252) close to the scissile phosphate. The roles that these amino acids play in the catalytic mechanism have been investigated using site-directed mutagenesis. The following variants were used: R9A, E78T, H134Q, D168S, D212S and H252Q. The kinetics of all six mutants with both DNA and a small chromophoric substrate, thymidine-3′,5′-di(p- nitrophenyl)-phosphate, were studied. Only R9A and E78T showed any significant turnover of the two substrates. D168S, H134Q, D212S and H252Q showed vanishingly low activities towards DNA and no detectable activity with thymidine-3′,5′-di-n(p-nitrophenyl)-phosphate. These results demonstrate that H134, D168, D212 and H252 play a critical role in the catalytic mechanism. It is suggested that H134 and H252 (which are hydrogen-bonded to E78 and D212, respectively) provided general acid and general base catalysis. DNase I also requires Mg2 +and E39 has been identified as a ligand for this metal ion. We propose that D168 serves as a ligand for a second Mg2 +, and thus DNase I, uses a two metal-ion hydrolytic mechanism. Both magnesium ions are used to supply electrophilic catalysis. Role assignment is based on the mutagenesis results, structural information, homologies between DNase I from different species and a comparison with exonuclease III. However, it is still not feasible to unequivocally assign a particular catalytic role to each amino acid/metal ion.  相似文献   

10.
X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution.   总被引:4,自引:0,他引:4  
The crystal structure of a complex between DNase I and the self-complementary octamer duplex d(GGTATACC)2 has been solved using the molecular replacement method and refined to a crystallographic R-factor of 18.8% for all data between 6.0 and 2.3 A resolution. In contrast to the structure of the DNase I-d(GCGATCGC)2 complex solved previously, the DNA remains uncleaved in the crystal. The general architecture of the two complexes is highly similar. DNase I binds in the minor groove of a right-handed DNA duplex, and to the phosphate backbones on either side over five base-pairs, resulting in a widening of the minor groove and a concurrent bend of the DNA away from the bound enzyme. There is very little change in the structure of the DNase I on binding the substrate. Many other features of the interaction are conserved in the two complexes, in particular the stacking of a deoxyribose group of the DNA onto the side-chain of a tyrosine residue (Y76), which affects the DNA conformation and the binding of an arginine side-chain in the minor groove. Although the structures of the DNA molecules appear at first sight rather similar, detailed analysis reveals some differences that may explain the relative resistance of the d(GGTATACC)2 duplex to cleavage by DNase I: whilst some backbone parameters are characteristic of a B-conformation, the spatial orientation of the base-pairs in the d(GGTATACC)2 duplex is close to that generally observed in A-DNA. These results further support the hypothesis that the minor-groove width and depth and the intrinsic flexibility of DNA are the most important parameters affecting the interaction. The disposition of residues around the scissile phosphate group suggests that two histidine residues, H134 and H252, are involved in catalysis.  相似文献   

11.
A method for protein structure prediction has been developed, which evaluates the compatibility of an amino acid sequence with known 3-dimensional structures and identifies the most likely structure. The method was applied to a large number of sequences in a database, and the structures of the following proteins were predicted: (1) shikimate kinase (SKase), (2) the hydrophilic subunit of mannose permease (IIABMan), (3) rat tyrosine aminotransferase (Tyr AT), and (4) threonine dehydratase (TDH). The functional and evolutionary implications of the predictions are discussed. (1) The structural similarity between SKase and adenylate kinase was predicted. Alignment of their sequences reveals that the ATP-binding type A sequence motif and 2 ATP-binding arginine residues are conserved. The prediction suggests a similarity in their functional mechanisms as well as an evolutionary relationship. (2) The structural similarity between IIABMan and galactose/glucose-binding protein (GGBP) was predicted. The IIA and IIB domains are aligned with the N- and C-terminal domains of GGBP, respectively. The 2 phosphorylated residues, His 10 and His 175, of IIABMan are threaded onto loops located in the substrate-binding cleft of GGBP. The prediction accounts for the phosphoryl transfer from His 10 to His 175, and to the sugar substrate. (3) The structural similarity between rat Tyr AT and Escherichia coli aspartate AT was predicted, as well as (4) the structural similarity between TDH and the tryptophan synthase beta subunit. Predictions (3) and (4) support the previous predictions based on observations of the functional similarities between the proteins.  相似文献   

12.
Sequence profile and fold recognition methods identified mammalian purple acid phosphatase (PAP), a member of a dimetal-containing phosphoesterase (DMP) family, as a remote homolog of human acid sphingomyelinase (ASM). A model of the phosphoesterase domain of ASM was built based on its predicted secondary structure and the metal-coordinating residues of PAP. Due to the low sequence identity between ASM and PAP (approximately 15%), the highest degree of confidence in the model resides in the metal-binding motifs. The ASM model predicts residues Asp 206, Asp 278, Asn 318, His 425, and His 457 to be dimetal coordinating. A putative orientation for the phosphorylcholine head group of the ASM substrate, sphingomyelin (SM), was made based on the predicted catalysis of the phosphorus-oxygen bond in the active site of ASM and on a structural comparison of the PAP-phosphate complex to the C-reactive protein-phosphorylcholine complex. These complexes revealed similar spatial interactions between the metal-coordinating residues, the metals, and the phosphate groups, suggesting a putative orientation for the head group in ASM consistent with the mechanism considerations. A conserved sequence motif in ASM, NX3CX3N, was identified (Asn 381 to Asn 389) and is predicted to interact with the choline amine moiety in SM. The resulting ASM model suggests that the enzyme uses an SN2-type catalytic mechanism to hydrolyze SM, similar to other DMPs. His 319 in ASM is predicted to protonate the ceramide-leaving group in the catalysis of SM. The putative functional roles of several ASM Niemann-Pick missense mutations, located in the predicted phosphoesterase domain, are discussed in context to the model.  相似文献   

13.
Sphingomyelinase (SMase) from Bacillus cereus (Bc-SMase) hydrolyzes sphingomyelin to phosphocholine and ceramide in a divalent metal ion-dependent manner. Bc-SMase is a homologue of mammalian neutral SMase (nSMase) and mimics the actions of the endogenous mammalian nSMase in causing differentiation, development, aging, and apoptosis. Thus Bc-SMase may be a good model for the poorly characterized mammalian nSMase. The metal ion activation of sphingomyelinase activity of Bc-SMase was in the order Co2+ > or = Mn2+ > or = Mg2+ > Ca2+ > or = Sr2+. The first crystal structures of Bc-SMase bound to Co2+, Mg2+, or Ca2+ were determined. The water-bridged double divalent metal ions at the center of the cleft in both the Co2+- and Mg2+-bound forms were concluded to be the catalytic architecture required for sphingomyelinase activity. In contrast, the architecture of Ca2+ binding at the site showed only one binding site. A further single metal-binding site exists at one side edge of the cleft. Based on the highly conserved nature of the residues of the binding sites, the crystal structure of Bc-SMase with bound Mg2+ or Co2+ may provide a common structural framework applicable to phosphohydrolases belonging to the DNase I-like folding superfamily. In addition, the structural features and site-directed mutagenesis suggest that the specific beta-hairpin with the aromatic amino acid residues participates in binding to the membrane-bound sphingomyelin substrate.  相似文献   

14.
Over the past decade, antimicrobial resistance has emerged as a major public health crisis. Glycopeptide antibiotics such as vancomycin and teicoplanin are clinically important for the treatment of Gram-positive bacterial infections. StaL is a 3'-phosphoadenosine 5'-phosphosulfate-dependent sulfotransferase capable of sulfating the cross-linked heptapeptide substrate both in vivo and in vitro, yielding the product A47934, a unique teicoplanin-class glycopeptide antibiotic. The sulfonation reaction catalyzed by StaL constitutes the final step in A47934 biosynthesis. Here we report the crystal structure of StaL and its complex with the cofactor product 3'-phosphoadenosine 5'-phosphate. This is only the second prokaryotic sulfotransferase to be structurally characterized. StaL belongs to the large sulfotransferase family and shows higher similarity to cytosolic sulfotransferases (ST) than to the bacterial ST (Stf0). StaL has a novel dimerization motif, different from any other STs that have been structurally characterized. We have also applied molecular modeling to investigate the binding mode of the unique substrate, desulfo-A47934. Based on the structural analysis and modeling results, a series of residues was mutated and kinetically characterized. In addition to the conserved residues (Lys(12), His(67), and Ser(98)), molecular modeling, fluorescence quenching experiments, and mutagenesis studies identified several other residues essential for substrate binding and/or activity, including Trp(34), His(43), Phe(77), Trp(132), and Glu(205).  相似文献   

15.
Nine proteins have been assigned to date to the superfamily of mammalian small heat shock proteins (sHsps): Hsp27 (HspB1, Hsp25), myotonic dystrophy protein kinase-binding protein (MKBP) (HspB2), HspB3, alphaA-crystallin (HspB4), alphaB-crystallin (HspB5), Hsp20 (p20, HspB6), cardiovascular heat shock protein (cvHsp [HspB7]), Hsp22 (HspB8), and HspB9. The most pronounced structural feature of sHsps is the alpha-crystallin domain, a conserved stretch of approximately 80 amino acid residues in the C-terminal half of the molecule. Using the alpha-crystallin domain of human Hsp27 as query in a BLAST search, we found sequence similarity with another mammalian protein, the sperm outer dense fiber protein (ODFP). ODFP occurs exclusively in the axoneme of sperm cells. Multiple alignment of human ODFP with the other human sHsps reveals that the primary structure of ODFP fits into the sequence pattern that is typical for this protein superfamily: alpha-crystallin domain (conserved), N-terminal domain (less conserved), central region (variable), and C-terminal tails (variable). In a phylogenetic analysis of 167 proteins of the sHsp superfamily, using Bayesian inference, mammalian ODFPs form a clade and are nested within previously identified sHsps, some of which have been implicated in cytoskeletal functions. Both the multiple alignment and the phylogeny suggest that ODFP is the 10th member of the superfamily of mammalian sHsps, and we propose to name it HspB10 in analogy with the other sHsps. The C-terminal tail of HspB10 has a remarkable low-complexity structure consisting of 10 repeats of the motif C-X-P. A BLAST search using the C-terminal tail as query revealed similarity with sequence elements in a number of Drosophila male sperm proteins, and mammalian type I keratins and cornifin-alpha. Taken together, the following findings suggest a specialized role of HspB10 in cytoskeleton: (1) the exclusive location in sperm cell tails, (2) the phylogenetic relationship with sHsps implicated in cytoskeletal functions, and (3) the partial similarity with cytoskeletal proteins.  相似文献   

16.
Twelve new thiazolidinones were synthesized and, together with 41 previously synthesized thiazolidinones, evaluated for inhibitory activity against deoxyribonuclease I (DNase I) in vitro. Ten compounds inhibited commercial bovine pancreatic DNase I with an IC50 below 200 μM and showed to be more potent DNase I inhibitors than crystal violet (IC50 = 365.90 ± 47.33 μM), used as a positive control. Moreover, three compounds were active against DNase I in rat liver homogenate, having an IC50 below 200 μM. (3-Methyl-1,4-dioxothiazolidin-2-ylidene)-N-(2-phenylethyl)ethanamide ( 41 ) exhibited the most potent DNase I inhibition against both commercial and rat liver DNase I with IC50 values of 115.96 ± 11.70 and 151.36 ± 15.85 μM, respectively. Site Finder and molecular docking defined the thiazolidinones interactions with the most important catalytic residues of DNase I, including the H-acceptor interaction with residues His 134 and His 252 and/or H-donor interaction with residues Glu 39 and Asp 168. The three most active compounds against both commercial and rat liver DNase I ( 31 , 38 , and 41 ) exhibited favorable physico-chemical, pharmacokinetic, and toxicological properties. These observations could be utilized to guide the rational design and optimization of novel thiazolidinone inhibitors. Thiazolidinones as novel DNase I inhibitors could have potential therapeutic applications due to the significant involvement of DNase I in the pathophysiology of many disease conditions.  相似文献   

17.
Identification of a novel phosphatase sequence motif.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.  相似文献   

18.
The goal of the research reported here is to identify evolutionarily conserved amino acid residues associated with enzymatic deamination of adenosine. To do this, we isolated molecular clones of the Escherichia coli adenosine deaminase gene by functional complementation of adenosine deaminase deficient bacteria and deduced the amino acid sequence of the enzyme from the nucleotide sequence of the gene. Nucleotide sequence analysis revealed the presence of a 996-nucleotide open reading frame encoding a protein of 332 amino acids having a molecular weight of 36,345. The deduced amino acid sequence of the E. coli enzyme has approximately 33% identity with those of the mammalian adenosine deaminases. With conservative amino acid substitutions the overall sequence homology approaches 50%, suggesting that the structures and functions of the mammalian and bacterial enzymes are similar. Additional amino acid sequence analysis revealed specific residues that are conserved among all three adenosine deaminases and four AMP deaminases for which sequence information is currently available. In view of previously published enzymological data and the conserved amino acid residues identified in this study, we propose a model to account for the enzyme-catalyzed hydrolytic deamination of adenosine. Potential catalytic roles are assigned to the conserved His 214, Cys 262, Asp 295, and Asp 296 residues of mammalian adenosine deaminases and the corresponding conserved amino acid residues in bacterial adenosine deaminase and the eukaryotic AMP deaminases.  相似文献   

19.
The Saccharomyces cerevisiae His6 gene codes for the enzyme phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase, catalyzing the fourth step in histidine biosynthesis. To get an insight into the structure and function of this enzyme, we determined its X-ray structure at a resolution of 1.30 A using the anomalous diffraction signal of the protein's sulphur atoms at 1.77 A wavelength. His6 folds in an (alpha/beta)8 barrel similar to HisA, which performs the same function in bacteria and archaea. We found a citrate molecule from the buffer bound in a pocket near the expected position of the active site and used it to model the open form of the substrate (phosphoribulosyl moiety), which is a reaction intermediate. This model enables us to identify catalytic residues and to propose a reaction mechanism where two aspartates act as acid/base catalysts: Asp134 as a proton donor for ring opening, and Asp9 as a proton acceptor and donor during enolization of the aminoaldose. Asp9 is conserved in yeast His6 and bacterial or archaeal HisA sequences, and Asp134 has equivalents in both HisA and TrpF, but they occur at a different position in the protein sequence.  相似文献   

20.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号