首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

2.
The detecting sensitivities of different-sized gold particles were compared in the localization of atrial natriuretic peptide (ANP) in rat atria. The secondary antibodies were goat antirabbit labeled with 5, 15, 30, or 40 nm colloidal gold diluted 1:2 to 1:100 in Tris buffer. The relative quantity of alpha-ANP immunoreactivity in specific granules was determined by subtracting the number of gold particles in 1 micron 2 nongranule area from that in 1 micron 2 granule area measured with a computerized image analyzer. The optimal dilution that achieved the maximal contrast between specific and background label was influenced by the particle size. Optimal dilutions were 1:80, 1:30, 1:20, and 1:5 for 5, 15, 30, and 40 nm gold, respectively. At optimal dilutions, the maximal detecting sensitivity (MDS) was in inverse proportion to the gold particle size; however, this relationship is not entirely linear. The ratio among the MDSs of 5, 15, 30, and 40 nm gold particles was approximately 34:9:3:2. A double immunogold staining was performed to localize alpha- and beta-ANPs with 15 and 5 nm gold, respectively. Both antigens were detected in the same granules. If the ratios established from the single staining data were used, the ratio between the alpha- and the beta-ANP antigens in the same granules was approximately 2.8:1. The data obtained in this study provide a useful reference for applications of immunogold electron microscopy in a quantitative manner, particularly for double immunogold labeling.  相似文献   

3.
We report a modification of the immunogold-silver staining method (IGSS) for localizing hepatic phosphoenolpyruvate carboxykinase (PEPCK) in tissue sections, and we compare the efficacy of localizing the primary antibody with either a 5 nm gold labeled secondary antibody or 5 nm gold labeled secondary and tertiary antibodies. Light microscope examination of 10 μm frozen sections demonstrated that the use of combined secondary and tertiary gold labeled antibodies was superior to using a secondary gold labeled antibody alone. The increased labeling density (number of colloidal gold particles/antigenic site/cell) achieved by combined gold labeled antibodies was confirmed by electron microscopy. The increased labeling density resulted in a two-thirds reduction in the time needed for the IGSS physical development of the silver shells and less background. We achieved intense specific staining of hepatocytes expressing PEPCK while minimizing background staining. The use of combined secondary and tertiary gold labeled antibodies enhances the signal-to-noise ratio, achieves high resolution and is a suitable method for use in both light and electron microscopy.  相似文献   

4.
Summary A triple ultrastructural immunogold staining method for the simultaneous demonstration of three surface antigens of peripheral blood mononuclear cells at the electron microscope level is described. A six-step pre-embedding immunoelectron microscopy procedure was developed, using commercially available reagents. The CD11b antigen was first detected, through a two-step (indirect) method with 40 nm-sized gold particles; after a blocking step, the HLA-DR surface antigen was subsequently detected, through a two-step (biotin-streptavidin) method with 20 nm-sized gold particles; the CD4 antigen was finally detected, through a one-step (direct) method, using 5 nm-sized gold particles. Electron microscopic examination revealed firstly the presence of a triple-labelled cell subpopulation, which showed gold granules of the three sizes simultaneously decorating the cell membrane. Thus, the cells of such a subset simultaneously expressed the three antigens investigated. In contrast, either gold particles of only one size or no gold particles were observed on the cell surface of other subpopulations. This technique is a model demonstrating the importance of varying the size of particles in pre-embedding gold immunoelectron microscopy for a better analysis of the expression of surface antigens in isolated cells.  相似文献   

5.
Membrane topology of receptors plays an important role in shaping transmembrane signalling of cells. Among the methods used for characterizing receptor clusters, fluorescence resonance energy transfer between a donor and acceptor fluorophore plays a unique role based on its capability of detecting molecular level (2-10 nm) proximities of receptors in physiological conditions. Recent development of biotechnology has made possible the usage of colloidal gold particles in a large size range for specific labelling of cells for the purposes of electron microscopy. However, by combining metal and fluorophore labelling of cells, the versatility of metal-fluorophore interactions opens the way for new applications by detecting the presence of the metal particles by the methods of fluorescence spectroscopy. An outstanding feature of the metal nanoparticle-fluorophore interaction is that the metal particle can enhance spontaneous emission of the fluorophore in a distance-dependent fashion, in an interaction range essentially determined by the size of the nanoparticle. In our work enhanced fluorescence of rhodamine and cyanine dyes was observed in the vicinity of immunogold nanoparticles on the surface of JY cells in a flow cytometer. The dyes and the immunogold were targetted to the cell surface receptors MHCI, MHCII, transferrin receptor and CD45 by monoclonal antibodies. The fluorescence enhancement was sensitive to the wavelength of the exciting light, the size and amount of surface bound gold beads, as well as the fluorophore-nanoparticle distance. The intensity of 90 degrees scattering of the incident light beam was enhanced by the immunogold in a concentration and size-dependent fashion. The 90 degrees light scattering varied with the wavelength of the incident light in a manner characteristic to gold nanoparticles of the applied sizes. A reduction in photobleaching time constant of the cyanine dye was observed in the vicinity of gold particles in a digital imaging microscope. Modulations of 90 degrees light scattering intensity and photobleaching time constant indicate the role of the local field in the fluorescence enhancement. A mathematical simulation based on the electrodynamic theory of fluorescence enhancement showed a consistency between the measured enhancement values, the inter-epitope distances and the quantum yields. The feasibility of realizing proximity sensors operating at distance ranges larger than that of the conventional Forster transfer is demonstrated on the surface of living cells.  相似文献   

6.
Summary Following a supralethal injection of ricin into thigh muscle of the adult rat, the toxin was demonstrated post-mortem in the para-aortic lymph node, ipsilateral to the side of injection. The relative merits of two immunoenzyme methods, peroxidase anti-peroxidase (PAP) and avidin—biotin—peroxidase complex (ABC) and a silver-enhanced immunogold method (IGSS) were assessed in the detection of ricin in the lymph node tissue. The toxin was clearly seen to be located in association with histiocytes found both within and lining the sinuses of the nodes and also, in some cases, in the subcapsular sinus of the node; the toxin was not demonstrable within lymphoid follicles by light microscopy. However, using electron microscopy and the IGSS technique, cells carrying discrete particles of gold could be visualized within follicular areas. The IGSS and ABC-peroxidase methods were both found to give excellent results without background staining at the light microscopy level. However, when these techniques were used prior to embedding and viewing by electron microscopy, the IGSS technique proved to be far superior.  相似文献   

7.
Immunogold silver staining for light microscopy   总被引:5,自引:3,他引:2  
 The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies. Accepted: 29 April 1996  相似文献   

8.
For the identification of the plant pathogenic bacterium Erwinia amylovora, the immuno gold staining (IGS) and immuno gold silver staining (IGSS) techniques are tested. The IGS and IGSS methods are at least as sensitive an indirect immunofluorescence and require less primary antiserum. Moreover they have the advantage that the preparations can be conserved permanently and unchanged. The preparation of the IGS can be observed with transmitted light or--with considerable better result--using epipolarization microscopy. The IGSS method deserves special attention because of its high contrast in normal brigth field microscopy with transmitted light.  相似文献   

9.
Summary For the identification of the plant pathogenic bacterium Erwinia amylovora, the immuno gold staining (IGS) and immuno gold silver staining (IGSS) techniques are tested.The IGS and IGSS methods are at least as sensitive an indirect immunofluorescence and require less primary antiserum. Moreover they have the advantage that the prepatrations can be conserved permanently and unchanged.The preparation of the IGS can be observed with transmitted light or — with considerable better result — using epipolarization microscopy.The IGSS method deserves special attention because of its high contrast in normal brigth field microscopy with transmitted light.  相似文献   

10.
Effect of particle size on labeling intensity in protein A-gold immunocytochemistry was studied. Catalase labeling of rat liver peroxisomes was used as a labeling model. Ultra-thin sections of Lowicryl K4M-embedded rat liver were stained for catalase with protein A-gold (pAg) probes. Five different sizes of colloidal gold probes, from 5 nm to 38 nm in diameter, were prepared. Labeling intensity decreased as the particle size of the pAg probes increased. The highest labeling was obtained by the 5-nm pAg probe and the lowest by the 38-nm pAg probe. Quantitative analysis also showed that labeling density was inversely proportional to the size of gold particles. The results suggest that the pAg probe with small gold particles has high sensitivity.  相似文献   

11.
W M McClain  W A Ghoul 《Biopolymers》1987,26(12):2027-2040
Recent theoretical work has shown that the complete set of polarized elastic light scattering studies should yield information about particle structure that has so far hardly been utilized. We present calculations of such light-scattering properties for a number of model structures, exploring particularly the size limit at which the new effects should become visible. The particles are assumed to be randomly oriented in aqueous suspension, and all identical to each other. We compare several particle models of differing geometrical shape, but with identical forward scattering power and identical radii of gyration. We find that one of the ten observables shows particularly desirable properties as a general large-particle characterization parameter: it is nonzero for all structures, it approaches zero as particle size decreases, and it shows an angular dependence that distinguishes among models of different shape. Assuming incident light at 350 nm, it differentiates between different shaped particles with radii of gyration as small as 50 nm. Such particles are well below the optical resolution limit and about the size of many types of viruses.  相似文献   

12.
The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ~30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important.  相似文献   

13.
Antibodies to chicken gizzard myosin, subfragment 1, light chain 20, and light meromyosin were used to visualize myosin in stress fibers of cultured chicken cells. The antibody specificity was tested on purified gizzard proteins and total cell lysates using immunogold silver staining on protein blots. Immunofluorescence on cultured chicken fibroblasts and epithelial cells exhibited a similar staining pattern of antibodies to total myosin, subfragment 1, and light chain 20, whereas the antibodies to light meromyosin showed a substantially different reaction. The electron microscopic distribution of these antibodies was investigated using the indirect and direct immunogold staining method on permeabilized and fixed cells. The indirect approach enabled us to describe the general distribution of myosin in stress fibers. Direct double immunogold labeling, however, provided more detailed information on the orientation of myosin molecules and their localization relative to alpha-actinin: alpha-actinin, identified with antibodies coupled to 10-nm gold, was concentrated in the dense bodies or electron-dense bands of stress fibers, whereas myosin was confined to the intervening electron-lucid regions. Depending on the antibodies used in combination with alpha-actinin, the intervening regions revealed a different staining pattern: antibodies to myosin (reactive with the head portion of nonmuscle myosin) and to light chain 20 (both coupled to 5-nm gold) labeled two opposite bands adjacent to alpha-actinin, and antibodies to light meromyosin (coupled to 5-nm gold) labeled a single central zone. Based on these results, we conclude that myosin in stress fibers is organized into bipolar filaments.  相似文献   

14.
A review is presented of recently developed methods for quantifying electron microscopical thin sections on which colloidal gold-labelled markers are used to identify and localize interesting molecules. These efficient methods rely on sound principles of random sampling, event counting, and statistical evaluation. Distributions of immunogold particles across cellular compartments can be compared within and between experimental groups. They can also be used to test for co-localization in multilabelling studies involving two or more sizes of gold particle. To test for preferential labelling of compartments, observed and expected gold particle distributions are compared by χ(2) analysis. Efficient estimators of gold labelling intensity [labelling density (LD) and/or relative labelling index (RLI)] are used to analyse volume-occupying compartments (e.g. Golgi vesicles) and/or surface-occupying compartments (e.g. cell membranes). Compartment size is estimated by counting chance events after randomly superimposing test lattices of points and/or line probes. RLI=1 when there is random labelling and RLI >1 when there is preferential labelling. Between-group comparisons do not require information about compartment size but, instead, raw gold particle counts in different groups are compared by combining χ(2) and contingency table analyses. These tests may also be used to assess co-distribution of different sized gold particles in compartments. Testing for co-labelling involves identifying sets of compartmental profiles that are unlabelled and labelled for one or both of two gold marker sizes. Numbers of profiles in each labelling set are compared by contingency table analysis and χ(2) analysis or Fisher's exact probability test. The various methods are illustrated with worked examples based on empirical and synthetic data and will be of practical benefit to those applying single or multiple immunogold labelling in their research.  相似文献   

15.
The endocytosis pathways of particles with terminal beta-D-galactosyl groups were studied in isolated rat Kupffer cells by electron microscopy. Colloidal gold particles of sizes 5, 17 and 50 nm were coated with asialofetuin (ASF) and isolated liver macrophages were allowed to bind (at 4 degrees C) or take up (at 37 degrees C) these ligands. Particles of all three sizes were bound via the galactose-particle receptor as shown by carbohydrate inhibition experiments and were ingested effectively. But, whereas ASF-gold particles of sizes 5 and 17 nm are taken up via the coated pit/coated vesicle pathway, the 50 nm particles are not. These enter the cell via non-coated endocytic vacuoles. All three particle sizes are transported to the same lysosomal compartment. These observations demonstrate that at least in macrophages one receptor is capable to mediate endocytosis via two different pathways depending on ligand size and/or valency.  相似文献   

16.
An incubation protocol to immunolabel Lowicryl semithin sections was applied to paraffin probes. To improve the labeling density, colloidal gold complexes of different preparations and sizes were compared. The type of colloidal gold preparation used was found to affect the specificity of the immunostaining. Gold colloid of 5 nm diameter particle size prepared with white phosphorus minimized nonspecific background labeling of β-casein in paraffin embedded sections of the mammary epithelium of pregnant mice. Gold colloids of 5 nm and 9 nm diameter particle size prepared in varying concentrations of tannic acid generated significant nonspecific staining in similar tissue preparations.  相似文献   

17.
An incubation protocol to immunolabel Lowicryl semithin sections was applied to paraffin probes. To improve the labeling density, colloidal gold complexes of different preparations and sizes were compared. The type of colloidal gold preparation used was found to affect the specificity of the immunostaining. Gold colloid of 5 nm diameter particle size prepared with white phosphorus minimized nonspecific background labeling of β-casein in paraffin embedded sections of the mammary epithelium of pregnant mice. Gold colloids of 5 nm and 9 nm diameter particle size prepared in varying concentrations of tannic acid generated significant nonspecific staining in similar tissue preparations.  相似文献   

18.
In order to observe the antigenic localization in the tissues of the young adult Paragonimus westermani, immunogold labeling method was applied using serum immunoglobulins(IgG) of the dog which infected with isolated metacercariae from Cambaroides similis. The sectioned worm tissue was embedded in Lowicryl HM 20 medium and stained with infected serum IgG and protein A gold complex (particle size; 12 nm). It was observed by electron microscopy at each tissues of the worm. The gold particles were not observed on the basal lamina of the tegument, interstitial matrix of the parenchyma, the muscle tissue and mitochondria of the tegument. The gold particles were specifically labeled in the secretory granules in the vitelline cells. They were predominantly labeling on the epithelial lamela and lumen of caecum. The above finding showed that antigenic materials in young adult worm tissue were specifically concentrated on the tegumental syncytium as well as cytoplasm of tegumental cells.  相似文献   

19.
Immunogold electron microscopy of surface antigens of oral bacteria   总被引:1,自引:0,他引:1  
Colloidal gold particles 3-6 nm in diameter were prepared and stabilized with the IgG fraction of polyspecific rabbit antisera produced against four different oral bacteria. The immunogold markers were used in homologous reactions to label the bacteria in a preembedding procedure for electron microscopy. An indirect immunofluorescence procedure was concurrently used to optimize the labelling conditions before observation with the electron microscope. The immunogold markers labelled fibrillar structures extending outward 50-275 nm from the Gram-positive cell envelopes and a fuzzy 5-10 nm thick capsulelike layer on the outer aspect of Bacteroides gingivalis. The immunogold method appears to be a simple, rapid, and inexpensive procedure suitable for the study of bacterial surface antigens and can be upgraded with the use of monospecific antibodies.  相似文献   

20.
Glutamate dehydrogenase (GDH) was localized in rat liver by indirect electron microscopic immunogold, using different sizes of gold particles and monoclonal and polyclonal antibodies. Using the protein A-gold technique in double immunocytochemical experiments, both antibodies, at their optimal dilutions, gave similar results. A novel assessment of the distribution of GDH was made by measurements of the number of gold particles per square micrometer of cross-sectional images of individual mitochondria. The data indicate intracellular homogeneity among mitochondria in individual parenchymal cells. The enzyme is almost absent in non-parenchymal cells. Finally, GDH was found mainly in association with the mitochondrial inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号