首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fogg JM  Lilley DM 《Biochemistry》2000,39(51):16125-16134
RuvC is the principal junction-resolving enzyme of Escherichia coli, cleaving four-way DNA junctions created in homologous recombination. It binds with structural specificity to DNA junctions as a dimer, whereupon each subunit cleaves a phosphodiester bond of diametrically disposed strands. To generate a productive resolution event, these cleavages must be symmetrically located with respect to the point of strand exchange, and in the context of a branch-migrating junction, this requires near-simultaneous cleavage by the two subunits. Using a supercoil-stabilized cruciform as a substrate, we have analyzed the kinetics of strand cleavage. Coordinated bilateral cleavage is not essential in RuvC action, because a heterodimer comprising active and inactive subunits is active in unilateral cleavage. However, in operational terms, fully active RuvC appears to introduce simultaneous cleavages of two strands, because the rate of second-strand cleavage is accelerated by a factor of almost 150 relative to the first. We suggest that relief of strain following the first cleavage could lead to acceleration of subsequent cleavage, and show that DNA junctions rendered more flexible by the presence of strand breaks or bulges are subject to faster cleavage by RuvC. Cleavage of one strand of a junction generated in situ by the action of RuvC can accelerate cleavage at an intrinsically poor site by a factor of 500. Very large rate enhancement of second-strand cleavage by RuvC is likely to be essential to ensure productive resolution of a junction that is being actively branch migrated by the RuvAB machinery.  相似文献   

2.
In homologous recombination in bacteria, the RuvAB Holliday junction-specific helicase catalyzes Holliday junction branch migration, and the RuvC Holliday junction resolvase catalyzes formation of spliced or patched structures. RuvAB and RuvC from the hyperthermophile Thermotoga maritima were expressed in Escherichia coli and purified to homogeneity. An inverted repeat sequence with unique termini was produced by PCR, restriction endonuclease cleavage, and head-to-tail ligation. A second inverted repeat sequence was derived by amplification of a second template containing a three-nucleotide insertion. Reassociation products from a mixture of these two sequences were homoduplex linear molecules and heteroduplex heat-stable Holliday junctions, which acted as substrates for both T. maritima RuvAB and RuvC. The T. maritima RuvAB helicase catalyzed energy-dependent Holliday junction branch migration at 70 degrees C, leading to heteroduplex linear duplex molecules with two three-nucleotide loops. Either ATP or ATP gamma S hydrolysis served as the energy source. T. maritima RuvC resolved Holliday junctions at 70 degrees C. Remarkably, the cleavage site was identical to the preferred cleavage site for E. coli RuvC [(A/T)TT(downward arrow)(G/C)]. The conservation of function and the ease of purification of wild-type and mutant thermophilic proteins argues for the use of T. maritima proteins for additional biochemical and structural studies.  相似文献   

3.
R Shah  R Cosstick    S C West 《The EMBO journal》1997,16(6):1464-1472
The Escherichia coli RuvC protein resolves DNA intermediates produced during genetic recombination. In vitro, RuvC binds specifically to Holliday junctions and resolves them by the introduction of nicks into two strands of like polarity. In contrast to junction recognition, which occurs without regard for DNA sequence, resolution occurs preferentially at sequences that exhibit the consensus 5'-(A/T)TT/(G/C)-3' (where / indicates the site of incision). Synthetic Holliday junctions containing modified cleavage sequences have been used to investigate the mechanism of cleavage. The results indicate that specific DNA sequences are required for the correct docking of DNA into the two active sites of the RuvC dimer. In addition, using chemically modified oligonucleotides to introduce a hydrolysis-resistant 3'-S-phosphorothiolate linkage at the cleavage site, it was found that, as long as the sequence requirements are fulfilled, the two incisions could be uncoupled from each other. These results indicate that RuvC protein resolves Holliday junctions by a mechanism similar to that exhibited by certain restriction enzymes.  相似文献   

4.
The Escherichia coli RuvABC proteins process recombination intermediates during genetic recombination and recombinational repair. Although early biochemical studies indicated distinct RuvAB-mediated branch migration and RuvC-mediated Holliday junction resolution reactions, more recent studies have shown that the three proteins act together as a "resolvasome" complex. In this work we have used recombination intermediates made by RecA to determine whether the RuvAB proteins affect the sequence specificity of the RuvC resolvase. We find that RuvAB proteins do not alter significantly the site specificity of RuvC-dependent cleavage, although under certain conditions, they do affect the efficiency of cleavage at particular sites. The presence of RecA also influences cleavage at some sites. We also show that the RuvAB proteins act upon transient strand exchange intermediates made using substrates that have the opposite polarity of those preferred by RecA. Together, our results allow us to develop further a model for the recombinational repair of DNA lesions that lead to the formation of post-replication gaps during DNA replication. The novel features of this model are as follows: (i) the RuvABC resolvasome recognizes joints made by RecA; (ii) resolution by RuvABC occurs at specific sites containing the RuvC consensus cleavage sequence 5'-(A/T)TT downward arrow(G/C)-3'; and (iii) Holliday junction resolution often occurs close to the initiating gap without significant heteroduplex DNA formation.  相似文献   

5.
Sha R  Iwasaki H  Liu F  Shinagawa H  Seeman NC 《Biochemistry》2000,39(39):11982-11988
The Holliday junction is a key DNA intermediate in the process of genetic recombination. It consists of two double-helical domains composed of homologous strands that flank a branch point; two of the strands are roughly helical, and two form the crossover between the helices. RuvC is a Holliday junction resolvase that cleaves the helical strands at a symmetric sequence, leading to the production of two recombinant molecules. We have determined the position of the cleavage site relative to the crossover point by the use of symmetric immobile junctions; these are DNA molecules containing two crossover points, one held immobile by sequence asymmetry and the second a symmetric sequence, but held immobile by torsional coupling to the first junction. We have built five symmetric immobile junctions, in which the tetranucleotide recognition site is moved stepwise relative to the branch point. We have used kinetic analysis of catalysis, gel retardation, and hydroxyl radical hypersensitivity to analyze this system. We conclude that the internucleotide linkage one position 3' to the crossover point is the favored site of cleavage.  相似文献   

6.
The formation and subsequent resolution of Holliday junctions are critical stages in recombination. We describe a new Escherichia coli endonuclease that resolves Holliday intermediates by junction cleavage. The 14 kDa Rus protein binds DNA containing a synthetic four-way junction (X-DNA) and introduces symmetrical cuts in two strands to give nicked duplex products. Rus also processes Holliday intermediates made by RecA into products that are characteristic of junction resolution. The cleavage activity on X-DNA is remarkably similar to that of RuvC. Both proteins preferentially cut the same two strands at the same location. Increased expression of Rus suppresses the DNA repair and recombination defects of ruvA, ruvB and ruvC mutants. We conclude that all ruv strains are defective in junction cleavage, and discuss pathways for Holliday junction resolution by RuvAB, RuvC, RecG and Rus.  相似文献   

7.
Resolution of Holliday junction recombination intermediates in most Gram-negative bacteria is accomplished by the RuvC endonuclease acting in concert with the RuvAB branch migration machinery. Gram-positive species, however, lack RuvC, with the exception of distantly related orthologues from bacteriophages infecting Lactococci and Streptococci. We have purified one of these proteins, 67RuvC, from Lactococcus lactis phage bIL67 and demonstrated that it functions as a Holliday structure resolvase. Differences in the sequence selectivity of resolution between 67RuvC and Escherichia coli RuvC were noted, although both enzymes prefer to cleave 3' of thymidine residues. However, unlike its cellular counterpart, 67RuvC readily binds and cleaves a variety of branched DNA substrates in addition to Holliday junctions. Plasmids expressing 67RuvC induce chromosomal breaks, probably as a consequence of replication fork cleavage, and cannot be recovered from recombination-defective E. coli strains. Despite these deleterious effects, 67RuvC constructs suppress the UV light sensitivity of ruvA, ruvAB and ruvABC mutant strains confirming that the phage protein mediates Holliday junction resolution in vivo. The characterization of 67RuvC offers a unique insight into how a Holliday junction-specific resolvase can evolve into a debranching endonuclease tailored to the requirements of phage recombination.  相似文献   

8.
Genetic evidence suggests that the Escherichia coli ruvC gene is involved in DNA repair and in the late step of RecE and RecF pathway recombination. To study the biochemical properties of RuvC protein, we overproduced and highly purified the protein. By employing model substrates, we examined the possibility that RuvC protein is an endonuclease that resolves the Holliday structure, an intermediate in genetic recombination in which two double-stranded DNA molecules are linked by single-stranded crossover. RuvC protein cleaves cruciform junctions, which are formed by the extrusion of inverted repeat sequences from a supercoiled plasmid and which are structurally analogous to Holliday junctions, by introducing nicks into strands with the same polarity. The nicked ends are ligated by E.coli or T4 DNA ligases. Analysis of the cleavage sites suggests that DNA topology rather than a particular sequence determines the cleavage site. RuvC protein also cleaves Holliday junctions which are formed between gapped circular and linear duplex DNA by the function of RecA protein. However, it does not cleave a synthetic four-way junction that does not possess homology between arms. The active form of RuvC protein, as studied by gel filtration, is a dimer. This is mechanistically suited for an endonuclease involved in swapping DNA strands at the crossover junctions. From these properties of RuvC protein and the phenotypes of the ruvC mutants, we infer that RuvC protein is an endonuclease that resolves Holliday structures in vivo.  相似文献   

9.
Liao S  Mao C  Birktoft JJ  Shuman S  Seeman NC 《Biochemistry》2004,43(6):1520-1531
Holliday junctions are intermediates in genetic recombination. They consist of four strands of DNA that flank a branch point. In natural systems, their sequences have 2-fold (homologous) sequence symmetry. This symmetry enables the molecules to undergo an isomerization, known as branch migration, that relocates the site of the branch point. Branch migration leads to polydispersity, which makes it difficult to characterize the physical properties of the junction and the effects of the sequence context flanking the branch point. Previous studies have reported two symmetric junctions that do not branch migrate: one that is immobilized by coupling to an asymmetric junction in a double crossover context, and a second that is based on molecules containing 5',5' and 3',3' linkages. Both are flawed by distorting the structure of the symmetric junction from its natural conformation. Here, we report an undistorted symmetric immobile junction based on the use of DNA parallelogram structures. We have used a series of these junctions to characterize the junction resolution reaction catalyzed by vaccinia virus DNA topoisomerase. The resolution reaction entails cleavage and rejoining at CCCTT/N recognition sites arrayed on opposing sides of the four-arm junction. We find that resolution is optimal when the scissile phosphodiester (Tp/N) is located two nucleotides 5' to the branch point on the helical strand. Covalent topoisomerase-DNA adducts are precursors to recombinant strands in all reactions, as expected. Kinetic analysis suggests a rate limiting step after the first-strand cleavage.  相似文献   

10.
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site.  相似文献   

11.
Activation of RuvC Holliday junction resolvase in vitro.   总被引:6,自引:0,他引:6       下载免费PDF全文
R Shah  R J Bennett    S C West 《Nucleic acids research》1994,22(13):2490-2497
The Escherichia coli RuvC protein is an endonuclease that resolves Holliday junctions. In vitro, the protein shows efficient structure-specific binding of Holliday junctions, yet the rate of junction resolution is remarkably low. We have mapped the sites of cleavage on a synthetic junction through which a crossover can branch migrate through 26 bp and find that > or = 90% of the junctions were cleaved at one site. This observation of sequence-specific cleavage suggests that inefficient resolution may be due to DNA binding events which occur away from the cleavage site and are therefore non-productive. Holliday junction resolution by RuvC protein can be stimulated by a number of factors including: (i) the presence of Mn2+ (rather than Mg2+) as the divalent metal cofactor, (ii) alkaline pH (< or = 10), and (iii) elevated temperature. These observations may indicate that other proteins are required for efficient RuvC-mediated resolution.  相似文献   

12.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.  相似文献   

13.
In Escherichia coli, the ruvA, ruvB and ruvC gene products are required for genetic recombination and the recombinational repair of DNA damage. New studies suggest that these three proteins function late in recombination and process Holliday junctions made by RecA protein-mediated strand exchange. In vitro, RuvA protein binds a Holliday junction with high affinity and, together with RuvB (an ATPase), promotes ATP-dependent branch migration of the junction leading to the formation of heteroduplex DNA. The third protein, RuvC, which acts independently of RuvA and RuvB, resolves recombination intermediates by specific endonucleolytic cleavage of the Holliday junction.  相似文献   

14.
Genetic recombination is a critical cellular process that promotes evolutionary diversity, facilitates DNA repair and underpins genome duplication. It entails the reciprocal exchange of single strands between homologous DNA duplexes to form a four-way branched intermediate commonly referred to as the Holliday junction. DNA molecules interlinked in this way have to be separated in order to allow normal chromosome transmission at cell division. This resolution reaction is mediated by structure-specific endonucleases that catalyse dual-strand incision across the point of strand cross-over. Holliday junctions can also arise at stalled replication forks by reversing the direction of fork progression and annealing of nascent strands. Resolution of junctions in this instance generates a DNA break and thus serves to initiate rather than terminate recombination. Junction resolvases are generally small, homodimeric endonucleases with a high specificity for branched DNA. They use a metal-binding pocket to co-ordinate an activated water molecule for phosphodiester bond hydrolysis. In addition, most junction endonucleases modulate the structure of the junction upon binding, and some display a preference for cleavage at specific nucleotide target sequences. Holliday junction resolvases with distinct properties have been characterized from bacteriophages (T4 endo VII, T7 endo I, RusA and Rap), Bacteria (RuvC), Archaea (Hjc and Hje), yeast (CCE1) and poxviruses (A22R). Recent studies have brought about a reappraisal of the origins of junction-specific endonucleases with the discovery that RuvC, CCE1 and A22R share a common catalytic core.  相似文献   

15.
Recently, poxviruses were found to encode a protein with signature motifs present in the RuvC family of Holliday junction (HJ) resolvases, which have a key role in homologous recombination in bacteria. The vaccinia virus homolog A22 specifically cleaved synthetic HJ DNA in vitro and was required for the in vivo resolution of viral DNA concatemers into unit-length genomes with hairpin telomeres. It was of interest to further characterize a poxvirus resolvase in view of the low sequence similarity with RuvC, the absence of virus-encoded RuvA and RuvB to interact with, and the different functions of the viral and bacterial resolvases. Because purified A22 aggregated severely, studies were carried out with maltose-binding protein fused to A22 as well as to RuvC. Using gel filtration, chemical cross-linking, analytical ultracentrifugation, and light scattering, we demonstrated that A22 and RuvC are homodimers in solution. Furthermore, the dimeric form of the resolvase associated with HJ DNA, presumably facilitating the symmetrical cleavage of such structures. Like RuvC, A22 symmetrically cleaved fixed HJ junctions as well as junctions allowing strand mobility. Unlike RuvC and other members of the family, however, the poxvirus enzyme exhibited little cleavage sequence specificity. Structural and enzymatic similarities of poxvirus, bacterial, and fungal mitochondrial HJ resolvases are consistent with their predicted evolutionary relationship based on sequence analysis. The absence of a homologous resolvase in mammalian cells makes these microbial enzymes excellent potential therapeutic targets.  相似文献   

16.
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.  相似文献   

17.
Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively‐charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild‐type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.  相似文献   

18.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.  相似文献   

19.
20.
Dissociation of synthetic Holliday junctions by E. coli RecG protein.   总被引:28,自引:6,他引:22       下载免费PDF全文
The RecG protein of Escherichia coli is needed for normal levels of recombination and for repair of DNA damaged by ultraviolet light, mitomycin C and ionizing radiation. The true extent of its involvement in these processes is masked to a large degree by what appears to be a functional overlap with the products of the three ruv genes. RuvA and RuvB act together to promote branch migration of Holliday junctions, while RuvC catalyses the resolution of these recombination intermediates into viable products by endonuclease cleavage. In this paper, we describe the overproduction and purification of RecG and demonstrate that the overlap extends to the biochemistry. We show that the 76 kDa RecG protein is a DNA-dependent ATPase, like RuvB. Using gel retardation assays we demonstrate that it binds specifically to a synthetic Holliday junction, like RuvA and RuvC. Finally, we show that in the presence of ATP and Mg2+, RecG dissociates these junctions to duplex products, like RuvAB. We suggest that RecG and RuvAB provide alternative activities than can promote branch migration of Holliday junctions in recombination and DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号