首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zu Y  Couture MM  Kolling DR  Crofts AR  Eltis LD  Fee JA  Hirst J 《Biochemistry》2003,42(42):12400-12408
Rieske [2Fe-2S] clusters can be classified into two groups, depending on their reduction potentials. Typical high-potential Rieske proteins have pH-dependent reduction potentials between +350 and +150 mV at pH 7, and low-potential Rieske proteins have pH-independent potentials of around -150 mV at pH 7. The pH dependence of the former group is attributed to coupled deprotonation of the two histidine ligands. Protein-film voltammetry has been used to compare three Rieske proteins: the high-potential Rieske proteins from Rhodobacter sphaeroides (RsRp) and Thermus thermophilus (TtRp) and the low-potential Rieske ferredoxin from Burkholderia sp. strain LB400 (BphF). RsRp and TtRp differ because there is a cluster to serine hydrogen bond in RsRp, which raises its potential by 140 mV. BphF lacks five hydrogen bonds to the cluster and an adjacent disulfide bond. Voltammetry measurements between pH 3 and 14 reveal that all the proteins, including BphF, have pH-dependent reduction potentials with remarkably similar overall profiles. Relative to RsRp and TtRp, the potential versus pH curve of BphF is shifted to lower potential and higher pH, and the pK(a) values of the histidine ligands of the oxidized and reduced cluster are closer together. Therefore, in addition to simple electrostatic effects on E and pK(a), the reduction potentials of Rieske clusters are determined by the degree of coupling between cluster oxidation state and histidine protonation state. Implications for the mechanism of quinol oxidation at the Q(O) site of the cytochrome bc(1) and b(6)f complexes are discussed.  相似文献   

2.
BACKGROUND: Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein surface, operate at potentials above +300 mV at pH 7, and express pH- and ionic strength-dependent redox behavior. The reduction potentials of the dioxygenase ferredoxins are approximately 150 mV and are pH-independent. These distinctions were predicted to arise from differences in the exposure of the cluster and/or interactions of the histidine ligands. RESULTS: The crystal structure of BphF, the Rieske-type ferredoxin associated with biphenyl dioxygenase, was determined by multiwavelength anomalous diffraction and refined at 1.6 A resolution. The structure of BphF was compared with other Rieske proteins at several levels. BphF has the same two-domain fold as other Rieske proteins, but it lacks all insertions that give the others unique structural features. The BphF Fe-S cluster and its histidine ligands are exposed. However, the cluster has a significantly different environment in that five fewer polar groups interact strongly with the cluster sulfide or the cysteinyl ligands. CONCLUSIONS: BphF has structural features consistent with a minimal and perhaps archetypical Rieske protein. Variations in redox potentials among Rieske clusters appear to be largely the result of local electrostatic interactions with protein partial charges. Moreover, it appears that the redox-linked ionizations of the Rieske proteins from proton-translocating complexes are also promoted by these electrostatic interactions.  相似文献   

3.
The Rieske iron-sulfur proteins have reduction potentials ranging from -150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron-sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was -150+/-2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.  相似文献   

4.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic properties of the Rieske iron-sulfur cluster. EPR spectra of the Rieske proteins lacking the disulfide bridge indicate the iron-sulfur cluster is assembled in the absence of the disulfide bridge, but there are significant shifts in all g values, indicating a change in the electronic structure of the [2Fe-2S] iron-sulfur center. In addition, the midpoint potential of the iron-sulfur cluster is lowered from 265 mV in the Rieske protein from wild-type yeast to 150 mV in the protein from the C164Y/C180L mutant and to 160 mV in the protein from the C164Y/C180V mutant. Ubiquinol-cytochrome c reductase activities of the bc(1) complexes with Rieske proteins lacking the disulfide bridge are less than 1% of the activity of the bc(1) complex from wild-type yeast, even though normal amounts of the iron-sulfur protein are present as judged by Western blot analysis. These activities are lower than the 105-115 mV decrease in the midpoint potential of the Rieske iron-sulfur cluster can account for. Pre-steady-state reduction of the bc(1) complexes with menadiol indicates that quinol is not oxidized through center P but is oxidized through center N. In addition, the levels of stigmatellin and UHDBT binding are markedly diminished, while antimycin binding is unaffected, in the bc(1) complexes with Rieske proteins lacking the disulfide bridge. Taken together, these results indicate that the ubiquinol oxidation site at center P is damaged in the bc(1) complexes with Rieske proteins lacking the disulfide bridge even though the iron-sulfur cluster is assembled into the Rieske protein.  相似文献   

5.
The equilibrium reduction potential of the 2[4Fe-4S] ferredoxin (Fd) isolated from four different bacterial strains was determined at a methyl viologen-modified gold electrode using square wave voltammetry. The observed reduction potential at pH 8 for Clostridium thermoaceticum Fd was -385 mV; Clostridium pasteurianum, -393 mV; Clostridium thermosaccharolyticum, -408 mV; and Chromatium vinosum, -460 mV versus normal hydrogen electrode at 25 degrees C. The reduction potential of the C. pasteurianum Fd was found to be pH independent from pH 6.4 to 8.7, indicating that the electron transfer mechanism does not involve proton exchange. In contrast, the reduction potential of the C. thermosaccharolyticum Fd was found to be pH dependent from pH 6.4 to 8.7, with pKox approximately 7 and pKred approximately 7.5. The +30 mV change in reduction potential from pH 8.7 to 6.4 was attributed to an electrostatic interaction between the iron-sulfur cluster II and the protonated histidine 2 residue located about 6 A away. The Ch. vinosum Fd interacted reversibly at the methyl viologen-modified gold electrode, and its reduction potential was verified using visible spectroelectrochemistry. The reduction potential of Ch. vinosum Fd was found to be 30 mV more positive than previously reported. The similarities of the bacterial Fd reduction potentials are discussed in terms of the homology of their primary structure as reflected by the similarities in the visible and circular dichroic spectra.  相似文献   

6.
Elsen NL  Moe LA  McMartin LA  Fox BG 《Biochemistry》2007,46(4):976-986
Toluene 4-monooxygenase catalyzes the NADH- and O2-dependent hydroxylation of toluene to form p-cresol. The four-protein complex consists of a diiron hydroxylase, an oxidoreductase, a catalytic effector protein, and a Rieske-type ferredoxin (T4moC). Phylogenetic analysis suggests that T4moC is part of a clade specialized for reaction with diiron hydroxylases, possibly reflected in the conservation of W69, whose indole side chain makes close contacts with a bridging sulfide. In order to further investigate the possible origins of this specialization, T4moC, mutated variants of T4moC, and three other purified ferredoxins (the Thermus Rieske protein, the Burkholderia cepacia Rieske-type biphenyl dioxygenase ferredoxin BphF, and the Ralstonia pickettii PK01 toluene monooxygenase TbuB, the Rieske-type ferredoxin from another diiron monooxygenase complex) were studied by redox potential measurements and their ability to complement the catalytic function of the reconstituted toluene 4-monooxygenase complex. A saturation mutagenesis of T4moC W69 indicates that an aromatic residue may modulate the redox potential and is also necessary for activity and/or stability. The redox potential of T4moC was determined to be -173 mV, W69F T4moC was -139 mV, and TbuB was -150 mV. For comparison, BphF had a redox potential of -157 mV [Couture et al. (2001) Biochemistry 40, 84-92]. Of these ferredoxins, all except BphF were able to provide catalytic activity. Given the range in redox potentials observed in the active ferredoxins, shape and electrostatics are strongly implicated in the catalytic specialization. Mutagenesis of other T4moC surface residues gave further insight into possible origins of catalytic specialization. Thus R65A T4moC gave an alteration in apparent KM only, while D82A/D83A T4moC gave alterations in both apparent kcat and KM. Since the different catalytic results were obtained by mutagenesis of residues lying on different sides of the protein adjacent to the [2Fe-2S] cluster, the results suggest that two different faces of T4moC may be involved in protein-protein interactions during catalysis.  相似文献   

7.
DitA3, a small soluble ferredoxin, is a component of a ring-hydroxylating dioxygenase involved in the microbial degradation of the diterpenoid, dehydroabietic acid. The anaerobic purification of a heterologously expressed his-tagged DitA3 yielded 20 mg of apparently homogeneous recombinant protein, rcDitA3, per liter of cell culture. Each mole of purified rcDitA3 contained 2.9 equivalents of iron and 4.2 equivalents of sulfur, indicating the presence of a single [Fe(3)S(4)] cluster. This conclusion was corroborated by UV-Visible absorption (epsilon(412)=13.4 mM(-1) cm(-1)) and EPR (g(x,y)=2.00 and g(z)=2.02) spectroscopies. The reduction potential of rcDitA3, determined using a highly oriented parallel graphite (HOPG) electrode, was -177.0+/-0.5 mV vs. the standard hydrogen electrode (SHE) (20 mM MOPS, 80 mM KCl, pH 7.0, 22 degrees C). This potential is similar to those of small, soluble Rieske-type ferredoxin components of aromatic-ring dihydroxylating dioxygenases. In contrast to these Rieske-type ferredoxins, DitA3 appears to exist as a dimer in solution. The dimeric ferredoxin may be more stable or may increase the catalytic efficiency of the dioxygenase by delivering the two reducing equivalents required for turnover of the oxygenase.  相似文献   

8.
Leggate EJ  Hirst J 《Biochemistry》2005,44(18):7048-7058
Rieske [2Fe-2S] clusters have reduction potentials which vary by over 500 mV, and which are pH dependent. In the cytochrome bc(1) complex, the high-potential and low-pK values of the cluster may be important in the mechanism of quinol oxidation. Hydrogen bonds, from both side-chain and mainchain groups, are crucial for these properties, but solvent accessibility and a disulfide bond (present in only high-potential Rieske proteins) have been suggested to be important determinants also. Previous studies have addressed the hydrogen bonds, disulfide bond, and a leucine residue which may restrict solvent access, by mutations in the cytochrome bc(1) complex. However, influences on the complex (disruption of quinol binding and displacement of the Rieske domain) are difficult to deconvolute from intrinsic effects on the Rieske cluster. Here, the effects of similar mutations on cluster potential, pK values, and stability are characterized comprehensively in the isolated Rieske domain of the bovine protein. Hydrogen bonds from Ser163 and Tyr165 are important in increasing the reduction potential and decreasing the pK values. The disulfide has a limited effect on the redox properties, but is crucial for cluster stability, particularly in the oxidized state. Mutations of Leu142 had little effect on cluster potential, pK values, or stability, in contrast to the significant effects which were observed in the complex. The sum of the effects of all the mutated residues accounts for most of the differences between high- and low-potential Rieske proteins.  相似文献   

9.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

10.
A new subtype of archaeal Rieske ferredoxin (RFd) has been identified in the genome of the thermoacidophilic archaeon Acidianus ambivalens. The gene is inserted in an atypical genomic context in a gene cluster encoding a NiFe hydrogenase. Sequence and phyletic analysis showed that the protein is related to bacterial RFd but not to any of the known archaeal Rieske proteins. The recombinant 14 kDa protein isolated from Escherichia coli behaved as a dimer in solution. It contained approximately 2 Fe/mol and all visible and EPR spectroscopic features typical of Rieske centre-containing proteins. However, its redox potential (+170 mV) was significantly higher than those of canonical RFd. This difference is rationalized in terms of the protein structure environment, as discrete amino acid substitutions in key positions around the metal centre account for the higher potential.  相似文献   

11.
Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe–S proteins contain a highly conserved all-β fold, which harbors a [2Fe–2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX(2–3)C motif is found at the C-terminus. We establish that in the Acidianus ambivalens representative, Rieske ferredoxin 2 (RFd2), these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe–2S] cluster or affect the secondary structure of the protein, as shown by visible circular dichroism, absorption, and attenuated total reflection Fourier transform IR spectroscopies. RFd2 presents all the EPR, visible absorption, and visible circular dichroism spectroscopic features of the [2Fe–2S] Rieske center. The cluster has a redox potential of +48 mV (25 °C and pH 7) and a pK a of 10.1 ± 0.2. These shift to +77 mV and 8.9 ± 0.3, respectively, upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (T m = 99 °C, pH 7.0), but it becomes destabilized upon disulfide reduction (ΔT m = −9 °C, ΔC m = −0.7 M guanidinium hydrochloride). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain may fine-tune the protein for a particular function or for increased stability.  相似文献   

12.
Dicamba O-demethylase is a multicomponent enzyme that catalyzes the conversion of the herbicide 2-methoxy-3,6-dichlorobenzoic acid (dicamba) to 3,6-dichlorosalicylic acid (DCSA). The three components of the enzyme were purified and characterized. Oxygenase(DIC) is a homotrimer (alpha)3 with a subunit molecular mass of approximately 40 kDa. FerredoxinDIC and reductaseDIC are monomers with molecular weights of approximately 14 and 45 kDa, respectively. EPR spectroscopic analysis suggested the presence of a single [2Fe-2S](2+/1+) cluster in ferredoxinDIC and a single Rieske [2Fe-2S](2+; 1+) cluster within oxygenaseDIC. Consistent with the presence of a Rieske iron-sulfur cluster, oxygenaseDIC displayed a high reduction potential of E(m,7.0) = -21 mV whereas ferredoxinDIC exhibited a reduction potential of approximately E(m,7.0) = -171 mV. Optimal oxygenaseDIC activity in vitro depended on the addition of Fe2+. The identification of formaldehyde and DCSA as reaction products demonstrated that dicamba O-demethylase acts as a monooxygenase. Taken together, these data suggest that oxygenaseDIC is an important new member of the Rieske non-heme iron family of oxygenases.  相似文献   

13.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

14.
The Rieske 2Fe2S center from Bacillus PS3, a Gram-positive thermophilic eubacterium, has been studied by EPR spectroscopy. Its redox midpoint potential at pH 7.0 was determined to be +165 +/- 10 mV and was found to decrease with an apparent slope of -80 mV/pH unit above pH 7.9. The Qo-site inhibitor stigmatellin induced spectral changes analogous to those reported for Rieske centers from mitochondria and chloroplasts. The redox midpoint potential of the PS3 Rieske cluster was not affected by stigmatellin. The orientation of the g tensor was similar to other Rieske centers (gz and gy are oriented parallel, gx is oriented perpendicular to the membrane plane). The shape of the EPR spectrum of the Rieske cluster from PS3 changed as a function of the redox state of the menaquinone (MK) pool. This permitted the redox midpoint potential of the MK pool to be determined in the membrane. Values of -60 +/- 20 mV at pH 7.0 and of -130 +/- 20 mV at pH 8.0 were obtained. The results are compared with already published data from other Rieske centers. It is proposed that all Rieske centers that function in electron transport chains using MK as pool quinone show common features that distinguish them from Rieske centers operating in ubiquinone- or plastoquinone-based electron transfer chains.  相似文献   

15.
The redox potential of the Rieske iron-sulfur protein depends on pH. It has been proposed that the histidines coordinating one of the irons are responsible for this pH dependence, but an experimental proof for this proposal is still lacking. In this work, we present a density functional/continuum electrostatics calculation of the p K(a) values of the histidines in the Rieske iron-sulfur center. The calculated apparent p K(a) values are 6.9 and 8.8 in the oxidized state, which are in good agreement with the corresponding experimental values of 7.5 and 9.2 and the measured pH dependence of the redox potential. Neither of these two p K(a) values can, however, be assigned to only one of the histidines. We find that both histidines titrate over a wide pH range in the oxidized state. Reduction of the iron-sulfur center shifts the p K(a) values to 11.3 and 12.8, thus above 10.0 as found experimentally. The results provide a complete picture of the coupling of proton and electron binding, showing strongly cooperative binding of protons at electrode potentials near the redox midpoint potential of the cluster. The potential biological function of the low p K(a) value of the histidines and the shift upon reduction are briefly discussed.  相似文献   

16.
The Rieske dioxygenase, anthranilate 1,2-dioxygenase, catalyzes the 1,2-dihydroxylation of anthranilate (2-aminobenzoate). As in all characterized Rieske dioxygenases, the catalytic conversion to the diol occurs within the dioxygenase component, AntAB, at a mononuclear iron site which accepts electrons from a proximal Rieske [2Fe-2S] center. In the related naphthalene dioxygenase (NDO), a conserved aspartate residue lies between the mononuclear and Rieske iron centers, and is hydrogen-bonded to a histidine ligand of the Rieske center. Engineered substitutions of this aspartate residue led to complete inactivation, which was proposed to arise from elimination of a productive intersite electron transfer pathway [Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) J. Bacteriol. 181, 1831-1837]. Substitutions of the corresponding aspartate, D218, in AntAB with alanine, asparagine, or glutamate also resulted in enzymes that were completely inactive over a wide pH range despite retention of the hexameric quaternary structure and iron center occupancy. The Rieske center reduction potential of this variant was measured to be approximately 100 mV more negative than that for the wild-type enzyme at neutral pH. The wild-type AntAB became completely inactive at pH 9 and exhibited an altered Rieske center absorption spectrum which resembled that of the D218 variants at neutral pH. These results support a role for this aspartate in maintaining the protonated state and reduction potential of the Rieske center. Both the wild-type and D218A variant AntABs exhibited substrate-dependent rapid phases of Rieske center oxidations in stopped-flow time courses. This observation does not support a role for this aspartate in a facile intersite electron transfer pathway or in productive substrate gating of the Rieske center reduction potential. However, since the single turnovers resulted in anthranilate dihydroxylation by the wild-type enzyme but not by the D218A variant, this aspartate must also play a crucial role in substrate dihydroxylation at or near the mononuclear iron site.  相似文献   

17.
Klingen AR  Ullmann GM 《Biochemistry》2004,43(39):12383-12389
Rieske proteins carry a redox-active iron-sulfur cluster, which is bound by two histidine and two cysteine side chains. The reduction potential of Rieske proteins depends on pH. This pH dependence can be described by two pK(a) values, which have been assigned to the two iron-coordinating histidines. Rieske proteins are commonly grouped into two major classes: Rieske proteins from quinol-oxidizing cytochrome bc complexes, in which the ligand histidines titrate in the physiological pH range, and bacterial ferredoxin Rieske proteins, in which the ligand histidines are protonated at physiological pH. In the study presented here, we have calculated pK(a) values of the cluster ligand histidines using a combined density functional theory/continuum electrostatics approach. Experimental pK(a) values for a bc-type and a ferredoxin Rieske protein could be reproduced. We could identify functionally important differences between the two proteins: hydrogen bonds toward the cluster, which are present in bc-type Rieske proteins, and negatively charged residues, which are present in ferredoxin Rieske proteins. We removed these differences by mutating the proteins in our calculations. The Rieske centers in the mutated proteins have very similar pK(a) values. We thus conclude that the studied structural differences are the main reason for the different pH-titration behavior of the proteins. Interestingly, the shift caused by neutralizing the negative charges in ferredoxin Rieske proteins is larger than the shift caused by removing the hydrogen bonds toward the cluster in bc-type Rieske proteins.  相似文献   

18.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

19.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a colloidal gold modified carbon paste electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -(449+/-1) mV in 0.1 M pH 5.0 phosphate buffer solution. The response showed a surface-controlled electrode process with an electron transfer rate constant of (38.9+/-5.3)/s determined in the scan rate range from 10 to 100 mV/s. GOD adsorbed on gold colloid nanoparticles maintained its bioactivity and stability. The immobilized GOD could electrocatalyze the reduction of dissolved oxygen and resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection with a high sensitivity (8.4 microA/mM), a linear range from 0.04 to 0.28 mM and a detection limit of 0.01 mM at a signal-to-noise ratio of 3sigma. The sensor could exclude the interference of commonly coexisted uric and ascorbic acid.  相似文献   

20.
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号