首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxidation of azurin and cytochrome c-551 catalysed by Pseudomonas aeruginosa cytochrome oxidase were re-investigated, and the steady-state parameters were evaluated by parametric and non-parametric methods. At low concentrations of substrates (e.g. less than or equal to 50 microM) the values obtained for Km and catalytic-centre activity are respectively 15 +/- 3 microM and 77 +/- 6 min-1 for azurin and 2.15 +/- 0.23 microM and 66 +/- 2 min-1 for cytochrome c-551, in general accord with previous reports assigning to cytochrome c-551 the higher affinity for the enzyme and to azurin a slightly higher catalytic rate. However, when the cytochrome c-551 concentration was extended well beyond the value of Km, the initial velocity increased, and eventually almost doubled at a substrate concentration greater than or equal to 100 microM. This result suggests a 'half-hearted' behaviour, since at relatively low cytochrome c-551 concentrations only one of the two identical binding sites of the dimeric enzyme seems to be catalytically active, possibly because of unfavourable interactions influencing the stability of the Michaelis-Menten complex at the second site. When reduced azurin and cytochrome c-551 are simultaneously exposed to Ps. aeruginosa cytochrome oxidase, the observed steady-state oxidation kinetics are complex, as expected in view of the rapid electron transfer between cytochrome c-551 and azurin in the free state. In spite of this complexity, it seems likely that a mechanism involving a simple competition between the two substrates for the same active site on the enzyme is operative. Addition of a chemically modified and redox inactive form of azurin (Hg-azurin) had no effect on the initial rate of oxidation of either azurin and cytochrome c-551, but clearly altered the time course of the overall process by removing, at least partially, the product inhibition. The results lead to the following conclusions: (i) reduced azurin and cytochrome c-551 bind at the same site on the enzyme, and thus compete; (ii) Hg-azurin binds at a regulatory site, competing with the product rather than the substrate; (iii) the two binding sites on the dimeric enzyme, though intrinsically equivalent, display unfavourable interactions. Since water is the product of the reduction of oxygen, point (iii) has important implications for the reaction mechanism.  相似文献   

2.
P Rosen  I Pecht 《Biochemistry》1976,15(4):775-786
The redox reaction between cytochrome c (Cyt c) (P-551) and the blue copper protein azurin, both from Pseudomonas aeruginosa, was studied using the temperature-jump technique. Two relaxation times were observed in a mechanism assumed to involve three equilibria. The fast relaxation time (0.4 less than tau less than 8 ms) was ascribed to the electron exchange step. The slow relaxation time (tau congruent to 37 ms) was assigned to a conformational equilibrium of the reduced azurin that was coupled through the electron exchange step to a faster conformational equilibrium of the oxidized Cyt c (P551). But because the Cyt c (P551) isomerization, being very rapid, was uncoupled from the two slower equilibria, and was assumed to involve no spectral change, the amplitude of its relaxation time (tau congruent to 0.1 ms) would be zero. At 25 degrees C and pH 7.0 the rate constants for the oxidation and reduction of Cyt c (P551) by azurin were 6.1 X 10(6) and 7.8 X 10(6) M-1 s-1, respectively; for the formation and disappearance of the reactive conformational isomer of azurin they were 12 and 17 s-1, respectively. The rates for the Cyt c (P551) isomerization could only be estimated at approximately 10(4) s-1. The thermodynamic parameters of each reaction step were evaluated from the amplitudes of the relaxations and from Eyring plots of the rate constants. Measurements of the overall equilibrium constant showed it to be temperature independent (5-35 degrees C), i.e. deltaHtot = 0. This zero enthalpy change was found to be compatible with the enthalpies calculated for the individual steps. In the electron exchange equilibrium, the values of the activation enthalpies were two to three times higher than the values published for various low molecular weight reagents in their electron exchange with copper proteins, yet the rate of exchange between Cyt c (P551) and azurin was some hundreds of times faster. This was explained in terms of the measured positive or zero entropies of activation that could result from a high level of specificity between the proteins particularly in areas of complementary charges. The mechanism of electron transfer was considered as essentially an outer sphere reaction, of which the rate could be approximated by the Marcus theory.  相似文献   

3.
Site-directed mutagenesis of the structural gene for azurin from Pseudomonas aeruginosa has been used to prepare azurins in which amino acid residues in two separate electron-transfer sites have been changed: His-35-Lys and Glu-91-Gln at one site and Phe-114-Ala at the other. The charge-transfer band and the EPR spectrum are the same as in the wild-type protein in the first two mutants, whereas in the Phe-114-Ala azurin, the optical band is shifted downwards by 7 nm and the copper hyperfine splitting is decreased by 4.10(-4)/cm. This protein also shows an increase of 20-40 mV in the reduction potential compared to the other azurins. The potentials of all four azurins decrease with increasing pH in phosphate but not in zwitterionic buffers with high ionic strength. The rate constant for electron exchange with cytochrome c551 is unchanged compared to the wild-type protein in the Phe-114-Ala azurin, but is increased in the other two mutant proteins. The results suggest that Glu-91 is not important for the interaction with cytochrome c551 and that His-35 plays no critical role in the electron transfer to the copper site.  相似文献   

4.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

5.
The nitrite oxidizes reduced azurin and cytochrome c-551 from Pseudomonas aeruginosa. The effects of pH, ionic strength and concentrations of nitrite, EDTA and the protein on the oxidation were investigated. The results obtained indicate that nitrite interacts not only with the terminal electron carrier of the nitrite reducing chain (nitrite reductase, cytochrome cd1) but also with the intermediate electron carrier components of the chain (azurin and cytochrome c-551).  相似文献   

6.
The electron-transfer reactions of site-specific mutants of the blue copper protein azurin from Pseudomonas aeruginosa with its presumed physiological redox partners cytochrome c551 and nitrite reductase were investigated by temperature-jump and stopped-flow experiments. In the hydrophobic patch of azurin Met44 was replaced by Lys, and in the His35 patch His35 was replaced by Phe, Leu and Gln. Both patches were previously thought to be involved in electron transfer. 1H-NMR spectroscopy revealed only minor changes in the three-dimensional structure of the mutants compared to wild-type azurin. Observed changes in midpoint potentials could be attributed to electrostatic effects. The slow relaxation phase observed in temperature-jump experiments carried out on equilibrium mixtures of wild-type azurin and cytochrome c551 was definitively shown to be due to a conformational relaxation involving His35. Analysis of the kinetic data demonstrated the involvement of the hydrophobic but not the His35 patch of azurin in the electron transfer reactions with both cytochrome c551 and nitrite reductase.  相似文献   

7.
The nuclear spin-spin and spin-lattice relaxation times of the C epsilon 1-proton of His-35 and the C delta 2-proton of His-46 of reduced Pseudomonas aeruginosa azurin have been determined at 298 and 320 K and at pH 4.5 and 9.0 at various concentrations of total azurin and in the presence of varying amounts of oxidized azurin. The relaxation times appear strongly influenced by the electron self-exchange reaction between oxidized and reduced protein. The T1 data of the His-35 proton have been analyzed according to the "fast-exchange limit," while the "slow-exchange limit" appears to obtain for the T2 data of the His-46 proton. Analysis of the proton relaxation data yields values of the electron self-exchange rate constants of (9.6 +/- 0.7) X 10(5) M-1 S-1 (pH 4.5) and (7.0 +/- 1.3) X 10(5) M-1 S-1 (pH 9.0) at 298 K. The dipolar correlation time amounts to 1-2.5 ns in the temperature range of 298-320 K. A Fermi-contact interaction of about 100 mG for the C delta 2-proton of His-46 is compatible with the experimental observations. The pH-induced conformational changes lead to variations on the order of about 1 A in the distance from the copper to the His-35 protons. The data implicate the "hydrophobic patch" around His-117 as the site of electron transfer in the self-exchange reaction of the azurin.  相似文献   

8.
The redox potentials of many c-type cytochromes vary with pH over the physiological pH range. We have investigated the pH dependence of redox potential for the four homologous cytochromes c-551 from Pseudomonas aeruginosa, Pseudomonas stutzeri strain 221, Pseudomonas stutzeri strain 224, and Pseudomonas mendocina . The pH dependence is due to an ionizable group that ionizes with pKox in ferricytochrome c-551 but with a higher pK, pKred , in ferrocytochrome c-551. For P. aeruginosa cytochrome c-551 it has been shown that this ionizable group is one of the heme propionic acid substituents [Moore, G. R., Pettigrew , G. W., Pitt , R. C., & Williams, R. J. P. (1980) Biochim. Biophys. Acta 590, 261-271]but the values of pKox and pKred are significantly lower in this protein than in the other three cytochromes. NMR and chemical modification studies show that for the two P. stutzeri cytochromes c-551 and P. mendocina cytochrome c-551, this propionic acid substituent is again important for the pH dependence of the redox potential. However, a histidine occurring at position 47 in their sequences hydrogen bonds to the propionic acid and thereby raises its pK. In P. aeruginosa cytochrome c-551, His-47 is substituted by Arg-47. Hydrogen-bonding schemes involving His-47 and the propionic acid are proposed.  相似文献   

9.
Fast reaction kinetic experiments on the electron transfer reaction between azurin and cytochrome c551 isolated from Pseudomonas aeruginosa confirmed the existence of two redox forms of reduced azurin previously reported. The pH dependence of the amplitudes of the relaxation processes observed in temperature jump experiments indicate that these two redox forms are in pH dependent equilibrium. The pH independence of the overall equilibrium constant indicates that redox active and inactive forms of cytochrome c551 may also exist. Evidence that reduced cytochrome c551 undergoes a pH transition is given by optical spectrophotometry. The nature of the transition is discussed in the context of recent nmr studies and in terms of the Marcus theory of electron transfer. The metabolic consequences of these transitions are also discussed.  相似文献   

10.
The electron transfer equilibrium and kinetics between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa have been studied. The equilibrium constant K = ([Cyt(III)] . [Az(I)])/([Cyt(II)] . [Az(II))]) = 0.5 at 25 degrees C is about seven times smaller than that observed between the cytochrome c551 and the titrations confirmed a 43-mV difference between the mid-point potentials of +266 mV and +309 mV for the Alcaligenes and Pseudomonas azurins respectively. The kinetics of the reaction between Alcaligenes azurin and Pseudomonas cytochrome c551 were investigated by the temperature-jump chemical relaxation method. Only a single relaxation mode was observed throughout the range of concentrations and temperatures examined. Thus, the slow relaxation time observed in the reaction between P. aeruginosa azurin and cytochrome c551 is not observed with the Alcaligenes azurin. The simplest mechanism that can therefore be ascribed to the investigated system is: [formula: see text]. This scheme is similar to that proposed earlier for the reaction between P. aeruginosa azurin and cytochrome c551 but does not involve the conformational transition proposed for azurin. The specific rates for the electron transfer are still fast: 1.8 x 10(6) M-1 . s-1 and 3.0 x 10(6) M-1 . s-1 respectively at 25 degrees C.  相似文献   

11.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

12.
Spectroscopic and electrochemical studies, incorporating electronic spectra, electron paramagnetic resonance (EPR) spectra, resonance Raman (RR) spectra, and measurements of the redox potential, have been carried out on the blue copper protein azurin, from Alcaligenes denitrificans. These data are correlated with the refined crystal structure of this azurin and with corresponding data for other blue copper proteins. The electronic spectrum, characterized by an intense (epsilon = 5100 M-1 cm-1) charge-transfer band at 619 nm, the EPR spectral parameters (g perpendicular = 2.059, g parallel of = 2.255, A parallel of = 60 X 10(-4) cm-1), and the resonance Raman spectrum are similar to those obtained from other azurins and from plastocyanins. Both the electronic spectrum and the EPR spectrum are unchanged over the pH range 4-10.5, but major changes occur above pH 12 and below pH 3.5. A small reversible change occurs at pH approximately 11.4. In the RR spectrum the Cu-S stretching mode is shown to contribute to all of the five principal RR peaks. Deuterium substitution produces shifts in at least seven of the peaks; these shifts may be attributable, at least in part, to the NH...S hydrogen bond to the copper-ligated Cys-112. Measurements of the redox potential, using spectroelectrochemical methods, over the temperature range 4.8-40.0 degrees C, give values for delta H0' and delta S0' of -55.6 kJ mol-1 and -97.0 J K-1 mol-1, respectively. The redox potential of A. denitrificans azurin at pH 7.0, Eo', is 276 mV. These data are interpreted in terms of a copper site, in azurin, comprising three strong bonds, in an approximately trigonal plane, from Cys-112, His-46, and His-117 and much longer axial approaches from Met-121 and the peptide carbonyl oxygen of Gly-45. Spectral differences within the azurin family and between azurin and plastocyanin are attributed to differences in the strengths of these axial interactions. Likewise, the distinctly lower Eo values for azurins, as compared with plastocyanins, are related to the more copper(II)-like site in azurin [with a weaker Cu-S(Met) interaction and a Cu-O interaction not found in plastocyanin]. On the other hand, the relative constancy of the EPR parameters between azurin and plastocyanin suggests they are not strongly influenced by weakly interacting axial groups.  相似文献   

13.
The electron-transfer reaction between azurin and cytochrome c1 isolated from Pseudomonas aeruginosa was investigated by rapid-reaction techniques. Temperture-jump studies clearly reveal two chemical relaxations, the amplitudes of which have ikentical spectral distributions, but relaxation times show different dependencies on reactant concentrations. Stopped experiments also showed complex kinetics. A model is proposed which is consistent with the kinetic and equilibrium data obtained. The central feature of this model is the proposal that two intercenvertible forms of reduced azurin exist in solution, only one of which si able to participate directly in the electron-transfer reaction with cytochrome c-551. Support for the hypothesis that two forms of reduced azurin exist is derived from studies on the electron-transfer reaction between azurin and Pseudomonas cytochrome oxidase. The possible physiological significance of such a situation is discussed.  相似文献   

14.
Resolution of two distinct electron transfer sites on azurin   总被引:1,自引:0,他引:1  
O Farver  Y Blatt  I Pecht 《Biochemistry》1982,21(15):3556-3561
Pseudomonas aeruginosa azurin is stoichiometrically and specifically labeled upon reduction by Cr(II)aq ions, yielding a substitution-inert Cr(III) adduct on the protein surface. We investigated the effect of this chemical modification on the reactivity of azurin with two of its presumed partners in the redox system of the bacterium. The Pseudomonas cytochrome oxidase catalyzed oxidation of reduced native and Cr(III)-labeled azurin by O2 was found to be unaffected by the modification. The kinetics of the electron exchange reaction between native or Cr(III)-labeled azurin and cytochrome c551 were studied by the temperature-jump method. Though similar chemical relaxation spectra were observed for native and modified systems, they differ quantitatively. Analysis of the concentration dependences of the relaxation times and amplitudes showed that both obey the same mechanism but that the specific reaction rates of the Cr(III)-modified protein are attenuated. This decreased reactivity of Cr(III)-labeled azurin toward one of its physiological partners suggests the involvement of the labeled region in the electron transfer reaction with cytochrome c551. Furthermore, the presence of a second active site, involved in the reduction of cytochrome oxidase, is suggested by the results.  相似文献   

15.
G.W. Pettigrew  F.A. Leitch  G.R. Moore 《BBA》1983,725(3):409-416
The midpoint redox potentials of Pseudomonas aeruginosa cytochrome c-551 and Rhodopseudomonas viridis cytochrome c2 were measured as a function of pH in the presence of Euglena cytochrome c-558 and the results compared with those obtained in the presence of ferro-ferricyanide. The pattern of pH dependence observed for the two bacterial cytochromes was the same whether it was measured by equilibrium with another redox protein or with the inorganic redox couple. Thus, the pH dependence of redox potential is not a consequence of pH-dependent ligand binding. The midpoint potential of Ps. aeruginosa azurin was measured as a function of pH using both ferro-ferricyanide mixtures and redox equilibrium with horse cytochrome c or Rhodopseudomonas capsulata cytochrome c2. In this case also the pattern of pH dependence obtained did not vary with the redox system used and it closely resembled that of Ps. aeruginosa cytochrome c-551. This is consistent with the observation that the equilibrium between cytochrome c-551 and azurin is relatively independent of pH. An equation was derived which described pH-dependent ligand binding and which can produce theoretical curves to fit the experimental pH dependence of redox potential for both cytochrome and azurin. However, the pronounced effect on such curves produced by varying the ligand association constants, and the insensitivity of the experimental data to changes in ionic strength, suggest that ligand binding effects do not account for the pH dependence of redox potential.  相似文献   

16.
A non-blue copper-containing glycoprotein was isolated from Pseudomonas aeruginosa. The protein has a molecular mass of 10 kDa and contains 1 atom of EPR-detectable type II copper. The protein inhibits oxidation of both azurin and cytochrome c-551 catalyzed by nitrite reductase from Ps. aeruginosa. Thus, it may be considered as an endogenous inhibitor of nitrite reductase.  相似文献   

17.
The azurin-encoding azu gene from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli. A purification procedure was developed to isolate the azurin obtained from the E. coli cells. No differences were observed between azurins isolated from P. aeruginosa and E. coli. A non-reconstitutable azurin-like protein, azurin*, with a spectral ratio (A625/A280) less than 0.01 could be separated from holo-azurin with a spectral ratio of 0.58 (+/- 0.01). The properties of azurin* were examined by electrophoretic (SDS-PAGE and IEF) and spectroscopic (UV/vis, 1H-NMR, static and dynamic fluorescence) techniques, and compared to the properties of holo-azurin and apo-azurin. Azurin* resembles apo-azurin (same pKa* values of His-35 and His-117, same fluorescence characteristics). However, it has lost the ability to bind Cu-ions. It is tentatively concluded that azurin* is a chemically modified form of azurin, the modification possibly being due to oxidation of the ligand residue Cys-112 or the formation of a chemical bond between the ligand residues Cys-112 and His-117. In agreement with previous results from Hutnik and Szabo (Biochemistry (1989) 28, 3923-3934), fluorescence experiments show that the heterogeneous fluorescence decay observed for holo-azurin is not due to the presence of azurin*, but most likely originates from conformational heterogeneity of the holo-azurin.  相似文献   

18.
Temperature-jump studies on the electron-transfer reaction between azurin and cytochrome c-551 clearly reveal two chemical relaxations. The amplitudes of these relaxation processes have identical spectral distributions, but the relaxation times show different dependences on the reactant concentrations. These findings are discussed in terms of possible models.  相似文献   

19.
15N relaxation measurements have been performed on the type Iota blue copper protein azurin from Pseudomonas aeruginosa. The relaxation times show that one loop (residues 103-108) and one turn (residues 74-77) display fast internal motions. The rest of the protein is rigid with an average order parameter S(2) of 0.85 +/- 0. 05. The copper binding site shows the same degree of rigidity even though is it composed of several loops and lies outside the beta-sheet sandwich. Substantial exchange broadening was found for a number of residues surrounding the side chain of His-35. The average exchange rate has been determined from NMR exchange spectroscopy experiments and is 45 +/- 6 s(-)(1) at 41 degrees C. The exchange broadening is caused by the protonation/deprotonation equilibrium of His-35. The NMR results indicate that the two structures of azurin observed by X-ray diffraction of crystals at pH 5.5 and 9.0 [Nar, H., Messerschmidt, A., Huber, R., Van de Kamp, M., Canters, G. W. (1991) J. Mol. Biol. 221, 765-772] are present in solution and that they interconvert slowly.  相似文献   

20.
The isolation of cytochrome c peroxidase, cytochrome c4, cytochrome c-551 and azurin from Pseudomonas dentrificans is described. The peroxidase has a molecular weight of 63,000 and an isoelectric point of 5.6. Its absorption spectrum suggests that it contains two haem c groups/molecule. Preliminary steady-state kinetic data are reported with cytochromes c-551 and c4 and azurin as the second substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号