首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep restriction causes impaired cognitive performance that can result in adverse consequences in many occupational settings. Individuals may rely on self-perceived alertness to decide if they are able to adequately perform a task. It is therefore important to determine the relationship between an individual’s self-assessed alertness and their objective performance, and how this relationship depends on circadian phase, hours since awakening, and cumulative lost hours of sleep. Healthy young adults (aged 18–34) completed an inpatient schedule that included forced desynchrony of sleep/wake and circadian rhythms with twelve 42.85-hour “days” and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:enforced-wakefulness. We investigated whether subjective alertness (visual analog scale), circadian phase (melatonin), hours since awakening, and cumulative sleep loss could predict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calculation Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that allowed nonlinear interactions between explanatory variables were evaluated using the Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accurate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved when all explanatory variables were included in the model. The best AIC score for ADD was achieved with circadian phase and subjective alertness variables. We conclude that subjective alertness alone is a weak predictor of objective vigilant or cognitive performance. Predictions can, however, be improved by knowing an individual’s circadian phase, current wake duration, and cumulative sleep loss.  相似文献   

2.
The authors present here mathematical models in which levels of subjective alertness and cognitive throughput are predicted by three components that interact with one another in a nonlinear manner. These components are (1) a homeostatic component (H) that falls in a sigmoidal manner during wake and rises in a saturating exponential manner at a rate that is determined by circadian phase during sleep; (2) a circadian component (C) that is a function of the output of our mathematical model of the effect of light on the circadian pacemaker, with the amplitude further regulated by the level of H; and (3) a sleep inertia component (W) that rises in a saturating exponential manner after waketime. The authors first construct initial models of subjective alertness and cognitive throughput based on the results of sleep inertia studies, sleep deprivation studies initiated across all circadian phases, 28-h forced desynchrony studies, and alertness and performance dose response curves to sleep. These initial models are then refined using data from nearly one hundred fifty 30- to 50-h sleep deprivation studies in which subjects woke at their habitual times. The interactive three-component models presented here are able to predict even the fine details of neurobehavioral data from sleep deprivation studies and, after further validation, may provide a powerful tool for the design of safe shift work and travel schedules, including those in which people are exposed to unusual patterns of light.  相似文献   

3.
4.
The pineal product melatonin is involved in the regulation of the sleep/wake cycle in humans. In blind individuals and in people travelling through time zones, melatonin rhythms are sometimes unsynchronized with the diel cycle, and nocturnal sleep may be disturbed. Low or distorted melatonin rhythms have repeatedly been reported in middle aged and elderly insomniacs. Melatonin administration effectively synchronized the sleep wake cycle in blind individuals and in subjects suffering from jet lag and advanced sleep onset in subjects suffering from delayed sleep phase syndrome. In elderly insomniacs, melatonin replacement therapy significantly decreased sleep latency, and/or increased sleep efficiency and decreased wake time after sleep onset. In addition, melatonin substitution facilitated benzodiazepine discontinuation in chronic users. These data show an association between melatonin rhythm disturbances and difficulties to promote or maintain sleep at night. Specific melatonin formulations may be useful to treat circadian-rhythm-related sleep disorders and age-related insomnia.  相似文献   

5.
This study examines the individual reproducibility of alterations of subjective, objective, and EEG measures of alertness during 27 h of continuous wakefulness and analyzes their interrelationships. Eight subjects were studied twice under similar constant-routine conditions. Scales and performance tasks were administered at hourly intervals to define temporal changes in subjective and objective alertness. The wake EEG was recorded every 2 h, 2 min with eyes open and 2 min with eyes closed. Plasma glucose and melatonin levels were measured to estimate brain glucose utilization and individual circadian phase, respectively. Decrements of subjective alertness and performance deficits were found to be highly reproducible for a given individual. Remarkably, there was no relationship between the impairments of subjective and objective alertness. With increased duration of wakefulness, EEG activity with eyes closed increased in the delta range and decreased in the alpha range, but the magnitudes of these changes were also unrelated. These findings indicate that sleep deprivation has highly reproducible, but independent, effects on brain mechanisms controlling subjective and objective alertness.  相似文献   

6.
ABSTRACT

Fatigue is recognized as an important safety concern in the transportation industry. In this study, our goal was to investigate how circadian and sleep–wake dependent factors influence St-Lawrence River pilots’ sleep–wake cycle, alertness and psychomotor performance levels at work. A total of 18 male St-Lawrence River ship pilots were recruited to a 16–21-day field study. Pilots’ chronotype, sleepiness and insomnia levels were documented using standardized questionnaires. Their sleep–wake cycle was documented by a sleep–wake log and wrist-worn activity monitoring. Subjective alertness and objective psychomotor performances were assessed ~5×/day for each work and rest day. Ship transits were distributed throughout the 24-h day and lasted on average (± SEM) 5.93 ± 0.67 h. Main sleep periods occurred mainly at night, and objectively lasted 6.04 ± 1.02 h before work days. When going to bed at the end of work days, pilots subjectively reported sleeping 7.64 ± 1.64 h in the prior 24 h. Significant diurnal and wake-dependent effects were observed for subjective alertness and objective psychomotor performance, with minimum levels occurring between 09:00 and 10:00. Thus, despite their irregular work schedule, ship pilots presented, as a group, a diurnal variation of alertness and psychomotor performance indicative of a day-oriented circadian system. Important inter-individual differences were observed on psychomotor performance mesor and phase. In individuals, earlier phases in psychomotor performance were correlated with earlier chronotype. This study indicates that both circadian and homeostatic processes modulate alertness and psychomotor performance levels with worst levels reached when long shifts ended in the morning. This work has potential applications as it indicates fatigue countermeasures considering both processes are scientifically based.  相似文献   

7.
A 47‐yr‐old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. He described a gradual evolvement of an irregular sleep‐wake pattern within the past 20 yrs, causing marked distress and severe impairment of daily functioning. He had to change to a part‐time position 7 yrs ago, because he was unable to maintain a regular full‐time job schedule. A 10‐day actigraphic record revealed an irregular sleep-wake pattern with extensive day‐to‐day variability in sleep onset time and sleep duration, and a 36 h sampling of both melatonin level and oral temperature (12 samples, once every 3 h) showed abnormal patterns, with the melatonin peak around noon and oral temperature peak around dawn. Thus, the patient was diagnosed as suffering from irregular sleep‐wake pattern. Treatment with melatonin (5 mg, 2 h before bedtime) did not improve his condition. A further investigation of the patient's daily habits and environmental conditions revealed two important facts. First, his occupation required work under a daylight intensity lamp (professional diamond‐grading equipment of more than 8000 lux), and second, since the patient tended to work late, the exposure to bright light occurred mostly at night. To recover his circadian rhythmicity and stabilize his sleep‐wake pattern, we recommended combined treatment consisting of evening melatonin ingestion combined with morning (09:00 h) bright light therapy (0800 lux for 1 h) plus the avoidance of bright light in the evening. Another 10‐day actigraphic study done only 1 wk after initiating the combined treatment protocol revealed stabilization of the sleep‐wake pattern with advancement of sleep phase. In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep‐wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep‐wake cycle and melancholy.  相似文献   

8.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4 ± 1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30 h; wake time: 07:30 h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2-4 h), whereas optimal alertness was slightly phase-delayed with body temperature (1 h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints.  相似文献   

9.
We have investigated the effects that sleep restriction (3-h sleep during two consecutive nights) have on an evening (17:00 h) submaximal weightlifting session; and whether this performance improves following a 1-h post-lunch powernap. Fifteen resistance-trained males participated in this study. Before the experimental protocol commenced, 1RM bench press and inclined leg press and normative habitual sleep were recorded. Participants were familiarised with the testing protocol, then completed three experimental conditions with two nights of prescribed sleep: (i) Normal (N): retire at 23:00 h and wake at 06:30 h, (ii) partial sleep-deprivation (SD): retire at 03:30 h and wake at 06:30 h and (iii) partial sleep-deprivation with nap (SDN): retire at 03:30 h and wake at 06:30 h with a 1-h nap at 13:00 h. Each condition was separated by at least 7 days and the order of administration was randomised and counterbalanced. Rectal (Trec) and mean skin (Ts) temperatures, Profile of Mood Scores, subjective tiredness, alertness and sleepiness values were measured at 08:00, 11:00, 14:00 and 17:00 h on the day of the weightlifting session. Following the final temperature measurements at 17:00 h, participants completed a 5-min active warm-up before a ‘strength’ protocol. Participants performed three repetitions of right-hand grip strength, then three repetitions at each incremental load (40%, 60% and 80% of 1RM) for bench press and inclined leg press, with a 5-min recovery in between each repetition. A linear encoder was attached perpendicular to the movement, to the bar used for the exercises. Average power (AP), average force (AF), peak velocity (PV), distance (D) and time-to-peak velocity (tPV) were measured (MuscleLab software) during the concentric phase of the movements for each lift. Data were analysed using general linear models with repeated measures. The main findings were that SD reduced maximal grip (2.7%), bench press (11.2% AP, 3.3% AF and 9.4% PV) and leg press submaximal values (5.7% AP) with a trend for a reduction in AF (3.3% P = 0.06). Furthermore, RPE increased for measures of grip strength, leg and bench press during SD. Following a 1-h powernap (SDN), values of grip and bench press improved to values similar in N, as did tiredness, alertness and sleepiness. There was a main effect for “load” on the bar for both bench and leg press where AP, AF, tPV values increased with load (P < 0.05) and PV decreased from the lightest to the heaviest load for both bench and leg press. An interaction of “load and condition” was present in leg press only, where the rate of change of AP is greater in the N than SD and SDN conditions. In addition, for PV and tPV the rate of change was greater for SDN than N or SD condition values. In summary, SD had a negative effect on grip strength and some components of bench and inclined leg press. The use of a 1-h power nap that ended 3 h before the “strength” assessment had a positive effect on weightlifting performance, subjective mood and ratings of tiredness.  相似文献   

10.
Our aim was to evaluate whether age-related changes in the phase of the output of the circadian timing system (CTS) can explain age differences in habitual bedtime/wake time and in sleep consolidation parameters. Analyses focused on a group of healthy elderly people (older than 70 years) with no sleep problems and with similar subjective sleep quality as a young control group. The 2-week sleep diary data and 24h laboratory temperature recordings were examined for 70 subjects (22 young men [YM], 19 old men [OM], 29 old women [OW]). Polysomnographic (PSG) sleep data recorded during temperature data acquisition were also available for 62 subjects. These analyses made use of our recently developed technique to demask temperature rhythm data. As expected, compared to the young subjects, older subjects showed earlier habitual bedtime and wake time, more disturbed sleep, and a tendency for an earlier minimum of the circadian temperature rhythm. Despite sleep consolidation differences, the groups showed very similar habitual phase-angle differences (interval between the time occurrence of the fitted temperature minimum and habitual wake time). Both elderly and young subjects woke up on average 3h after the temperature minimum. After controlling for the effects of age group, habitual bedtime and wake time were related to clock time phase of the circadian temperature rhythm, with an earlier phase associated with earlier habitual bedtime and wake time. None of the sleep consolidation parameters were linked to the temperature phase angle. In conclusion, sleep consolidation changes associated with healthy aging do not appear to be related to changes in the phase-angle difference between the output signal from the CTS and sleep.  相似文献   

11.
The sleep of healthy people--a diary study   总被引:4,自引:0,他引:4  
  相似文献   

12.
Twenty four shift workers (8 from a steel industry and 16 from a Government hospital) participated in the study. The subjects were instructed to self-measure oral temperature, 4 6 times a day for about three weeks. Sleep quantity and quality for each subject were analysed with the help of an appropriate inventory. The data were analysed by cosinor and power spectrum methods. The frequency of circadian rhythm detection was in the order of 48% in senior nurses, 29% in steel plant workers and 14% in junior nurses. These were also complemented by the results of power spectrum analysis. Present results suggest that rhythms of subjective fatigue and subjective drowsiness are governed neither by oral temperature oscillator nor by the sleep/wake cycle oscillator. The results show that shift rotation pattern chiefly modulates the circadian time structure of shift workers. It is also suggested that the phenomenon of circadian rhythm desynchronization in oral temperature appears to be independent of per day total sleep length.  相似文献   

13.
In order to document circadian rhythmicity in various psychological functions under the chronobiologically 'pure' condition of temporal isolation, a battery of mood and performance tests were administered about 6 times per day to a heterogeneous group of 18 subjects (ages 19-81, 5 female). Each subject spent about 5 days in temporal isolation, entrained to a routine equivalent to his/her own habitual sleep/wake cycle. Average time of day functions were obtained for the mood and performance variables, and compared to rectal temperature data subjected to exactly the same statistical analysis. Significant time of day effects were found in the mood variables of alertness, sleepiness, weariness, effort required, happiness and well-being. Times of 'best' mood were different from the time of peak temperature. Moreover, the minima of sleepiness, weariness and effort occurred earlier in the day than the maximum of alertness. Significant time of day effects were also found in the speed with which search and dexterity tasks were completed. Only the dexterity tasks showed a complete parallelism with the temperature rhythm.  相似文献   

14.
A shorter phase angle between habitual wake time and underlying circadian rhythms has been reported in evening types (E types) compared to morning-types (M types). In this study, phase angles were compared between 12 E types and 12 M types to verify if this difference was observed when the sleep schedule was relatively free from external social constraints. Subjects were selected according to their Morningness-Eveningness Questionnaire score (MEQ score). There were 6 men and 6 women in each group (ages 19-34 years), and all had a habitual sleep duration between 7 and 9 h. Sleep schedule was recorded by actigraphy and averaged over 7 days. Circadian phase was estimated by the hour of temperature minimum (T(min)) in a 26-h recording and by the timing of the onset of melatonin secretion (dim-light melatonin onset [DLMO]) measured in saliva samples. Phase angles were defined as the interval between phase markers and averaged wake time. Results showed that, in the present experimental conditions, phase angles were very similar in the 2 groups of subjects. However, results confirmed the previously reported correlation between phase and phase angle, showing that a later circadian phase was associated with a shorter phase angle. Gender comparisons showed that for a same MEQ score, women had an earlier DLMO and a longer phase angle between DLMO and wake time. Despite a significant difference in the averaged circadian phases between E-type and M-type groups, there was an overlap in the circadian phases of the subjects of the 2 groups. Further comparisons were made between the 2 circadian types, separately for the subgroups with overlapping or nonoverlapping circadian phases. In both subgroups, the significant difference between MEQ scores, bedtimes, and wake times were maintained in the expected direction. In the subgroup with nonoverlapping circadian phases, phase angles were shorter in E-type subjects, in accordance with previous studies. However, in the overlapping subgroup, phase angles were significantly longer in E types compared to M types. Results suggest that the morningness-eveningness preference identified by the MEQ score refers to 2 distinct mechanisms, 1 associated with a difference in circadian period and phase of entrainment and the other associated with chronobiological aspects of sleep regulation.  相似文献   

15.
Circadian determinants of subjective alertness   总被引:1,自引:0,他引:1  
Four healthy male subjects each experienced a temporal isolation experiment lasting several months. During part of each experiment (2-5 weeks), the subject's entire imposed daily routine (including light-dark, rest-activity, and meal routines) was either stretched (two subjects: T = 25.8 hr, 26.0 hr) or reduced (two subjects: T = 22.8 hr, 23.1 hr) to beyond the range of entrainment of the endogenous circadian pacemaker (ECP), which then ran at a different period (tau). Subjective alertness was measured approximately three times per hour (during wakefulness), using a computerized visual analogue scale technique. Circadian rhythms in subjective alertness were then plotted both at tau, the period length of the ECP, and at T, the period length of the imposed sleep-wake cycle (SWC) and light-dark cycle. At tau, the alertness rhythm was closely in phase with the temperature rhythm. At T, the alertness rhythm showed an "inverted-U" function with a peak toward the middle of the subjective day, upon which was superimposed a "postlunch dip" for one subject. Thus, subjective alertness would appear to be under the control fo both ECP and SWC mechanisms, which combine to produce the composite time-of-day function normally observed in a diurnal setting.  相似文献   

16.
The effects of low doses of melatonin (0.1, 0.5 and 1 mg) given at 16:00 h on induction and quality of sleep in the late afternoon (17:00-21:00 h), as well as on subjective fatigue and mood ratings before and after sleep were studied. Ten healthy male volunteers (age 26-30 years) were given on a double-blind crossover basis, tablets containing melatonin, or placebo, with one day washout between treatments. Mood and fatigue were assessed before and after bedtime. Sleep quality was objectively monitored using wrist-worn actigraphs and subjectively by using sleep logs. Data were analysed by means of analysis of variance for repeated measures with a factor of group (placebo and the three melatonin doses). The analysis revealed dose-dependent increase by melatonin in subjective evaluation of fatigue and sleepiness, and decrease in alertness, efficiency, vigor and concentration before the nap. Melatonin did not significantly affect actigraph-measured nap sleep latency and efficiency but reduced wake time after sleep onset and delayed sleep offset time compared to placebo, Melatonin did not significantly affect sleep latency and sleep efficiency in the night following the treatment. These data indicate acute effects of low doses of melatonin given at 16:00h on sleepiness and fatigue but not on sleep efficiency or latency in healthy young individuals.  相似文献   

17.
The effects of low doses of melatonin (0.1, 0.5 and 1 mg) given at 16:00 h on induction and quality of sleep in the late afternoon (17:00-21:00 h), as well as on subjective fatigue and mood ratings before and after sleep were studied. Ten healthy male volunteers (age 26-30 years) were given on a double-blind crossover basis, tablets containing melatonin, or placebo, with one day washout between treatments. Mood and fatigue were assessed before and after bedtime. Sleep quality was objectively monitored using wrist-worn actigraphs and subjectively by using sleep logs. Data were analysed by means of analysis of variance for repeated measures with a factor of group (placebo and the three melatonin doses). The analysis revealed dose-dependent increase by melatonin in subjective evaluation of fatigue and sleepiness, and decrease in alertness, efficiency, vigor and concentration before the nap. Melatonin did not significantly affect actigraph-measured nap sleep latency and efficiency but reduced wake time after sleep onset and delayed sleep offset time compared to placebo, Melatonin did not significantly affect sleep latency and sleep efficiency in the night following the treatment. These data indicate acute effects of low doses of melatonin given at 16:00h on sleepiness and fatigue but not on sleep efficiency or latency in healthy young individuals.  相似文献   

18.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4?±?1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30?h; wake time: 07:30?h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2–4?h), whereas optimal alertness was slightly phase-delayed with body temperature (1?h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints. (Author correspondence: )  相似文献   

19.
Menstrual cycle-associated changes in reproductive hormones affect body temperature in women. We aimed to characterize the interaction between the menstrual, circadian, and scheduled sleep-wake cycles on body temperature regulation. Eight females entered the laboratory during the midfollicular (MF) and midluteal (ML) phases of their menstrual cycle for an ultradian sleep-wake cycle procedure, consisting of 36 cycles of 60-minute wake episodes alternating with 60-minute nap opportunities, in constant bed-rest conditions. Core body temperature (CBT) and distal skin temperature (DT) were recorded and used to calculate a distal-core gradient (DCG). Melatonin, sleep, and subjective sleepiness were also recorded. The circadian variation of DT and DCG was not affected by menstrual phase. DT and DCG showed rapid, large nap episode-dependent increases, whereas CBT showed slower, smaller nap episode-dependent decreases. DCG values were significantly reduced for most of the wake episode in an overall 60-minute wake/60-minute nap cycle during ML compared to MF, but these differences were eliminated at the wake-to-nap lights-out transition. Nap episode-dependent decreases in CBT were further modulated as a function of both circadian and menstrual factors, with nap episode-dependent deceases occurring more prominently during the late afternoon/evening in ML, whereas nap episode-dependent DT and DCG increases were not significantly affected by menstrual phase but only circadian phase. Circadian rhythms of melatonin secretion, DT, and DCG were significantly phase-advanced relative to CBT and sleep propensity rhythms. This study explored how the thermoregulatory system is influenced by an interaction between circadian phase and vigilance state and how this is further modulated by the menstrual cycle. Current results agree with the thermophysiological cascade model of sleep and indicate that despite increased CBT during ML, heat loss mechanisms are maintained at a similar level during nap episodes, which may allow for comparable circadian sleep propensity rhythms between menstrual phases.  相似文献   

20.
ABSTRACT

Travel across time zones disrupts circadian rhythms causing increased daytime sleepiness, impaired alertness and sleep disturbance. However, the effect of repeated consecutive transmeridian travel on sleep–wake cycles and circadian dynamics is unknown. The aim of this study was to investigate changes in alertness, sleep–wake schedule and sleepiness and predict circadian and sleep dynamics of an individual undergoing demanding transmeridian travel. A 47-year-old healthy male flew 16 international flights over 12 consecutive days. He maintained a sleep–wake schedule based on Sydney, Australia time (GMT + 10?h). The participant completed a sleep diary and wore an Actiwatch before, during and after the flights. Subjective alertness, fatigue and sleepiness were rated 4 hourly (08:00–00:00), if awake during the flights. A validated physiologically based mathematical model of arousal dynamics was used to further explore the dynamics and compare sleep time predictions with observational data and to estimate circadian phase changes. The participant completed 191?h and 159 736?km of flying and traversed a total of 144 time-zones. Total sleep time during the flights decreased (357.5?min actigraphy; 292.4?min diary) compared to baseline (430.8?min actigraphy; 472.1?min diary), predominately due to restricted sleep opportunities. The daily range of alertness, sleepiness and fatigue increased compared to baseline, with heightened fatigue towards the end of the flight schedule. The arousal dynamics model predicted sleep/wake states during and post travel with 88% and 95% agreement with sleep diary data. The circadian phase predicted a delay of only 34?min over the 16 transmeridian flights. Despite repeated changes in transmeridian travel direction and flight duration, the participant was able to maintain a stable sleep schedule aligned with the Sydney night. Modelling revealed only minor circadian misalignment during the flying period. This was likely due to the transitory time spent in the overseas airports that did not allow for resynchronisation to the new time zone. The robustness of the arousal model in the real-world was demonstrated for the first time using unique transmeridian travel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号