共查询到20条相似文献,搜索用时 8 毫秒
1.
The human GM2 activator protein. A substrate specific cofactor of beta-hexosaminidase A. 总被引:3,自引:0,他引:3
E M Meier G Schwarzmann W Fürst K Sandhoff 《The Journal of biological chemistry》1991,266(3):1879-1887
Ganglioside GD1a-GalNAc was isolated from Tay-Sachs brain, tritium-labeled in its sphingosine moiety, and its enzymic degradation studied in vitro and in cultured fibroblasts. When offered as micelles, GD1a-GalNAc was almost not hydrolyzed by Hex A or Hex B, while after incorporation of the ganglioside into the outer leaflet of liposomes, the terminal GalNAc residue was rapidly split off by Hex a. In striking contrast to ganglioside GM2, the major glycolipid substrate of Hex A, the enzymic hydrolysis of GD1a-GalNAc was not promoted by the GM2 activator protein, although the activator protein did bind GD1a-GalNAc to form a water-soluble complex. Pathobiochemical studies corroborate these results. After incorporation of [3H]GD1a-GalNAc into cultured skin fibroblasts from healthy subjects and from patients with different variants of GM2 gangliosidosis, its degradation was found to be strongly attenuated in mutant cells with Hex A deficiencies such as variant B (Tay-Sachs disease), variant B1 and variant 0 (Sandhoff disease), while in cells with variant AB (GM2 activator deficiency), its catabolism was blocked only at the level of GM2. In line with these metabolic studies, a normal content of GD1a-GalNAc was found in brains of patients who had succumbed to variant AB of GM2 gangliosidosis whereas in brains from variants B, B1, and 0, its concentration was considerably elevated (up to 19-fold). Together with studies on the enzymic degradation of GM2 derivatives with modifications in the ceramide portion, these results indicate that mainly steric hindrance by adjacent lipid molecules impedes the access of Hex A to membrane-bound GM2 (whose degradation therefore depends on solubilization by the GM2 activator) and in addition that the interaction between the GM2. GM2 activator complex and the enzyme must be highly specific. 相似文献
2.
Zarghooni M Bukovac S Tropak M Callahan J Mahuran D 《Biochemical and biophysical research communications》2004,324(3):1048-1052
The alpha- and/or beta-subunits of human beta-hexosaminidase A (alphabeta) and B (betabeta) are approximately 60% identical. In vivo only beta-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the alpha-subunit. A model for this interaction suggests that two loop structures, present only in the alpha-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-beta-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant alpha-subunits demonstrate that only the site that is removed from the beta-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events. 相似文献
3.
Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 2. Evidence for two different active sites 总被引:2,自引:0,他引:2
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase by substrate analogues, by the end product, tyrosine, and by the protein modifying agent iodoacetate has been investigated. The purpose of the investigations was to determine if the two reactions catalyzed by the enzyme occur at a single active site or at two separate active sites. Evidence in support of the conclusion that the mutase and dehydrogenase reactions are catalyzed at two similar but distinct active sites comes from the following results: (1) A substrate analogue (endo-oxabicyclic diacid) that inhibits competitively the mutase reaction has no effect on the dehydrogenase reaction. (2) Malonic acid and several of its derivatives act as inhibitory analogues of chorismate in the mutase reaction and of prephenate in the dehydrogenase reaction. However, different dissociation constants for their interaction with the free enzyme are obtained from studies on the mutase and dehydrogenase reactions. (3) The kinetics of the inhibition by tyrosine of the mutase reaction in the presence of NAD differ from those of the dehydrogenase reaction. The results confirm that carboxymethylation with iodoacetate of one cysteine residue per subunit eliminates both mutase and dehydrogenase activities and show that the inactivation of the enzyme activities is due to iodoacetate functioning as an active site directed inhibitor. 相似文献
4.
5.
Tissue-type plasminogen activator binding to human endothelial cells. Evidence for two distinct binding sites 总被引:8,自引:0,他引:8
E S Barnathan A Kuo H Van der Keyl K R McCrae G R Larsen D B Cines 《The Journal of biological chemistry》1988,263(16):7792-7799
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis. 相似文献
6.
Mencarelli S Cavalieri C Magini A Tancini B Basso L Lemansky P Hasilik A Li YT Chigorno V Orlacchio A Emiliani C Sonnino S 《FEBS letters》2005,579(25):5501-5506
Mature beta-hexosaminidase A has been found associated to the external leaflet of plasma membrane of cultured fibroblasts. The plasma membrane association of beta-hexosaminidase A has been directly determined by cell surface biotinylation followed by affinity chromatography purification of the biotinylated proteins, and by immunocytochemistry. The immunological and biochemical characterization of biotinylated beta-hexosaminidase A revealed that the plasma membrane associated enzyme is fully processed, suggesting its lysosomal origin. 相似文献
7.
Evidence for two distinct active sites on aldehyde dehydrogenase 总被引:2,自引:0,他引:2
Aldehyde dehydrogenase can catalyze the hydrolysis of esters such as p-nitrophenyl acetate as well as oxidize aldehydes to acids. It has not been proven unequivocally that the two reactions occur at the same active site. In the accompanying paper (Tu, G. C., and Weiner, H. (1988) J. Biol. Chem. 263, 1212-1217) evidence was presented which showed that cysteine at position 49 was at the active site for the dehydrogenase reaction. Evidence also was presented which showed that cysteine located at position 162 was susceptible to modification by N-ethylmaleimide. It was shown here that the two activities of the enzyme can be differently protected from inactivation by substrate analogs. Furthermore, aldehydes were found to be poor inhibitors against the esterase reaction while ester was a good inhibitor against the dehydrogenase reaction. In addition, it was possible to modify cysteine 49 with N-ethylmaleimide but not find inhibition of the esterase reactivity until cysteine 162 was modified. It appears that horse liver aldehyde dehydrogenase has two separate active sites per subunit. The data fit a model where ester can be hydrolyzed at both sites but that aldehyde oxidation occurred only at position 49. 相似文献
8.
Isolation of a cDNA encoding the human GM2 activator protein 总被引:3,自引:0,他引:3
M Schr?der H Klima T Nakano H Kwon L E Quintern S G?rtner K Suzuki K Sandhoff 《FEBS letters》1989,251(1-2):197-200
The GM2 activator protein is a glycolipid-binding protein required for the lysosomal degradation of ganglioside GM2. A human fibroblast cDNA library was screened with mixtures of oligonucleotide probes corresponding to four different areas of the amino acid sequence. A putative clone (821 bp) which gave positive signals to all four probe mixtures was purified and sequenced. The sequence was colinear with the sequence of 160 amino acids of the mature GM2 activator protein. Availability of the cDNA clone should facilitate investigation into function of the GM2 activator protein and also into genetic abnormalities underlying GM2 gangliosidosis AB variant. 相似文献
9.
The effects of surfactants on the human liver hexosaminidase A-catalysed hydrolysis of Gm2 ganglioside were assessed. Some non-ionic surfactants, including Triton X-100 and Cutscum, and some anionic surfactants, including sodium taurocholate, sodium dodecyl sulphate, phosphatidylinositol and N-dodecylsarcosinate, were able to replace the hexosaminidase A-activator protein [Hechtman (1977) Can. J. Biochem. 55, 315–324; Hechtman & Leblanc (1977) Biochem. J. 167, 693–701) and also stimulated the enzymic hydrolysis of substrate in the presence of saturating concentrations of activator. Other non-ionic surfactants, such as Tween 80, Brij 35 and Nonidet P40, and anionic surfactants, such as phosphatidylethanolamine, did not enhance enzymic hydrolysis of Gm2 ganglioside and inhibited hydrolysis in the presence of activator. The concentration of surfactants at which micelles form was determined by measurements of the minimum surface-tension values of reaction mixtures containing a series of concentrations of surfactant. In the case of Triton X-100, Cutscum, sodium taurocholate, N-dodecylsarcosinate and other surfactants the concentration range at which stimulation of enzymic activity occurs correlates well with the critical micellar concentration. None of the surfactants tested affected the rate of hexosaminidase A-catalysed hydrolysis of 4-methylumbelliferyl N-acetyl-β-d-glucopyranoside. Both activator and surfactants that stimulate hydrolysis of Gm2 ganglioside decrease the Km for Gm2 ganglioside. Inhibitory surfactants are competitive with the activator protein. Evidence for a direct interaction between surfactants and Gm2 ganglioside was obtained by comparing gel-filtration profiles of 3H-labelled GM2 ganglioside in the presence and absence of surfactants. The results are discussed in terms of a model wherein a mixed micelle of surfactant or activator and GM2 ganglioside is the preferred substrate for enzymic hydrolysis. 相似文献
10.
Two different protein activators were isolated simultaneously from human liver for the enzymic hydrolysis of GM1 (Gal beta 1 leads to 3GalNAc beta 1 leads to 4Gal(3 comes from 2 alpha NeuAc)beta 1 leads to 4Glc-Cer) by beta-galactosidase and GM2 (GalNAc beta 1 leads to 4Gal(3 comes from 2 alpha NeuAc)beta 1 leads to 4Glc-Cer) by beta-hexosaminidase A. The hydrolysis of GM1 is stimulated only by the GM1-specific activator which has very little effect on the hydrolysis of GM2. The same is also true for the hydrolysis of GM2. The antiserum raised against GM1 activator did not cross-react with GM2 activator and vice versa. These results suggest the presence of two different activators for the separate hydrolysis of GM1 and GM2. In connection with the enzymic hydrolysis of GM1 and GM2, we found that the hydrolysis of GM2 by human hepatic beta-N-acetylhexosaminidase A was severely inhibited by a buffer of high ionic strength, whereas no such inhibition was observed in the hydrolysis of GM1 by beta-galactosidase. 相似文献
11.
C. G. Schütte T. Lemm G. J. Glombitza K. Sandhoff 《Protein science : a publication of the Protein Society》1998,7(4):1039-1045
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398). 相似文献
12.
Beccari T Balducci C Aisa MC Della Fazia MA Servillo G Orlacchio A 《Bioscience reports》2001,21(1):55-62
Type 2 diabetes (or non-insulin dependent diabetes mellitus, NIDDM) is a common metabolic disease in man. The Goto–Kakizaki (GK) rat has been designed as a NIDDM model. Previous studies with this strain have shown differences at the mitochondrial level. The mitochondrial permeability transition (MPT) is a widely studied phenomenon but yet poorly understood, that leads to mitochondrial dysfunction and cell death. The aim of this work was to compare the differences in susceptibility of induction of the MPT with calcium phosphate in GK and Wistar rats. Our results show that heart mitochondria from GK rats are less susceptible to the induction of MPT, and show a larger calcium accumulation before the overall loss of mitochondrial impermeability. 相似文献
13.
Werth N Schuette CG Wilkening G Lemm T Sandhoff K 《The Journal of biological chemistry》2001,276(16):12685-12690
According to a recent hypothesis, glycosphingolipids originating from the plasma membrane are degraded in the acidic compartments of the cell as components of intraendosomal and intralysosomal vesicles and structures. Since most previous in vitro investigations used micellar ganglioside GM2 as substrate, we studied the degradation of membrane-bound ganglioside GM2 by water-soluble beta-hexosaminidase A in the presence of the GM2 activator protein in a detergent-free, liposomal assay system. Our results show that anionic lipids such as the lysosomal components bis(monoacylglycero)phosphate or phosphatidylinositol stimulate the degradation of GM2 by beta-hexosaminidase A up to 180-fold in the presence of GM2 activator protein. In contrast, the degradation rate of GM2 incorporated into liposomes composed of neutral lysosomal lipids such as dolichol, cholesterol, or phosphatidylcholine was significantly lower than in negatively charged liposomes. This demonstrates that both, the GM2 activator protein and anionic lysosomal phospholipids, are needed to achieve a significant degradation of membrane-bound GM2 under physiological conditions. The interaction of GM2 activator protein with immobilized membranes was studied with surface plasmon resonance spectroscopy at an acidic pH value as it occurs in the lysosomes. Increasing the concentration of bis(monoacylglycero)phosphate in immobilized liposomes led to a significant drop of the resonance signal in the presence of GM2 activator protein. This suggests that in the presence of bis(monoacylglycero)phosphate, which has been shown to occur in inner membranes of the acidic compartment, GM2 activator protein is able to solubilize lipids from the surface of immobilized membrane structures. 相似文献
14.
A Cys138-to-Arg substitution in the GM2 activator protein is associated with the AB variant form of GM2 gangliosidosis. 下载免费PDF全文
The AB-variant form of GM2 gangliosidosis is an inherited lysosomal storage disease. Biochemical data have linked its cause to the lack of a functional GM2 activator protein (activator). In the present study we identify a mutation in the gene encoding the activator protein of an AB-variant patient. These data represent direct evidence that the disease in the patient described here is a result of mutations at the Activator gene locus. A T412----C transition was found in the homozygous form in cDNA and genomic DNA from the patient. This nucleotide change would result in the substitution of Cys138 by an Arg residue in the activator protein. Whereas the patient's fibroblasts produce apparently normal levels of activator mRNA, they lack a functional activator protein. Transfection of either a construct containing the normal activator cDNA, pAct1, or a cDNA construct containing the T----C transition caused COS-1 cells to transcribe high levels of activator mRNA. Lysates from cells transfected with pAct1 produced an elevated level of both pro- and mature forms of the activator protein, with an accompanying 11-fold enhancement in the ability of purified hexosaminidase A to hydrolyze GM2 ganglioside. However, lysates from cells transfected with the mutant cDNA construct contained only low levels of the pro-activator protein, which failed to enhance hexosaminidase A activity significantly above the endogenous level of mock transfected COS cells. We conclude that the T412----C transition in the GM2 Activator gene of the patient is responsible for the disease phenotype. 相似文献
15.
Bacterial MutS homodimers contain two ATPase active sites that have non-equivalent functions in DNA mismatch repair. The homologous Msh2-Msh6 complex in eukaryotes also has intrinsic ATPase activity that is essential for mismatch repair. Here, we investigate differences in the two putative ATPase active sites by examining the properties of heterodimers containing alanine substituted for an invariant glutamic acid in the active site of either Msh2, Msh6 or both. Mutation rates in wild type versus Glu-->Ala mutant haploid yeast strains indicate that both ATPase active sites are essential for mismatch repair activity in vivo. The properties of purified heterodimers suggest that the ATPase active site in Msh6 binds ATP with higher affinity and hydrolyzes ATP faster and with higher efficiency than does the ATPase active site in Msh2. This suggests sequential action of the two ATPase active sites, in which ATP binds to Msh6 first to trigger downstream events in mismatch repair. 相似文献
16.
Isolation and expression of a full-length cDNA encoding the human GM2 activator protein 总被引:2,自引:0,他引:2
B Xie B McInnes K Neote A M Lamhonwah D Mahuran 《Biochemical and biophysical research communications》1991,177(3):1217-1223
We report the construction of a cDNA clone encoding a functional GM2-activator protein. The sequence of the complete 5' end of the coding region was determined by direct nucleotide sequencing of a fragment generated by multiple RACE PCR procedures from Hela cell cDNA. Specific oligonucleotides were synthesized from these data which allowed us to produce a PCR fragment that contained the complete coding sequence of the protein. This was then cloned into a mammalian expression vector. The ability of purified hexosaminidase A (beta-N-acetylhexosaminidase, EC 3.2.1.52) to hydrolyse labeled GM2 ganglioside was enhanced 10-fold more by the addition in the assay mix of lysate from transfected COS-1 cells than by the addition of identical amounts of lysate from mock transfected cells. Direct sequencing of PCR fragments from two sources also identified three polymorphisms. 相似文献
17.
Activating proteins for ganglioside GM2 degradation by beta-hexosaminidase isoenzymes in tissue extracts from different species 总被引:2,自引:0,他引:2
J Burg A Banerjee E Conzelmann K Sandhoff 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1983,364(7):821-829
The existence of activator proteins that stimulate hydrolysis of ganglioside GM2 by beta-hexosaminidase was demonstrated in kidney extracts from four species (rat, mouse, cattle and pig). The extent to which these preparations, as well as their human counterpart, promote ganglioside GM2 catabolism by autologous and heterologous hexosaminidase isoenzymes was compared. It was found that these activators can replace each other functionally, although the animal activator proteins do not cross-react immunochemically with an antiserum against the human protein. All preparations examined catalysed the transfer of ganglioside GM2 between liposomal membranes, indicating that the animal activator proteins act by a mechanism similar to the human GM2 activator. 相似文献
18.
Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2) 总被引:6,自引:0,他引:6
Zelcer N Huisman MT Reid G Wielinga P Breedveld P Kuil A Knipscheer P Schellens JH Schinkel AH Borst P 《The Journal of biological chemistry》2003,278(26):23538-23544
Multidrug resistance protein 2 (MRP2) belongs to the ATP binding cassette family of transporters. Its substrates include organic anions and anticancer drugs. We have used transport assays with vesicles derived from Sf9 insect cells overproducing MRP2 to study the interactions of drugs, organic anions, and bile acids with three MRP2 substrates: estradiol-17-beta-d-glucuronide (E217betaG), methotrexate, and glutathione-S-dinitrophenol. Complex inhibition and stimulation patterns were obtained, different from those observed with the related transporters MRP1 and MRP3. In contrast to a previous report, we found that the rate of E217betaG transport by MRP2 increases sigmoidally with substrate concentration indicative of homotropic cooperativity. Half-maximal transport was obtained at 120 microm E217betaG, in contrast to values < 20 microm for MRP1 and 3. MRP2 stimulators, such as indomethacin and sulfanitran, strongly increased the affinity of MRP2 for E217betaG (half-maximal transport rates at 65 and 16 microm E217betaG, respectively) and shifted the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one, without substantially affecting the maximal transport rate. Sulfanitran also stimulated MRP2 activity in cells, i.e. the transport of saquinavir through monolayers of Madin-Darby canine kidney II cells. Some compounds that stimulate E217betaG transport, such as penicillin G or pantoprazole, are not detectably transported by MRP2, suggesting that they allosterically stimulate transport without being cotransported with E217betaG. We propose that MRP2 contains two similar but nonidentical ligand binding sites: one site from which substrate is transported and a second site that regulates the affinity of the transport site for the substrate. 相似文献
19.
B Rigat D Reynaud N Smiljanic-Georgijev D Mahuran 《Biochemical and biophysical research communications》1999,258(2):256-259
The GM2 activator protein is required as a substrate-specific cofactor for beta-hexosaminidase A to hydrolyze GM2 ganglioside. The GM2 activator protein reversibly binds and solubilizes individual GM2 ganglioside molecules, making them available as substrate. Although GM2 ganglioside is the strongest binding ligand for the activator protein, it can also bind and transport between membranes a series of other glycolipids, even at neutral pH. Biosynthetic studies have shown that a large portion of newly synthesized GM2 activator molecules are not targeted to the lysosome, but are secreted and can then be recaptured by other cells through a carbohydrate independent mechanism. Thus, the GM2 activator protein may have other in vivo functions. We found that the GM2 activator protein can inhibit, through specific binding, the ability of platelet activating factor (PAF) to stimulate the release of intracellular Ca2+ pools by human neutrophils. PAF is a biologically potent phosphoacylglycerol. Inhibitors for PAF's role in the pathogenesis of inflammatory bowel disease and asthma have been sought as potential therapeutic agents. The inherent stability and protease resistance of the small, monomeric GM2 activator protein, coupled with the ability to produce large quantities of the functional protein in transformed bacteria, suggest it may serve as such an agent. 相似文献
20.
A highly specific method for the purification of human beta-hexosaminidase A employing immunoaffinity chromatography is described. Using an antiserum against the unique antigenic determinant, alpha, of beta-hexosaminidase A, and elution with 8.0M urea, a 283-or 417-fold purification of the enzyme was obtained in a single step from crude human placental homogenate. 相似文献