首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome that is characterized by the development of multiple vascular tumors and is caused by inactivation of the von Hippel-Lindau protein (pVHL). Here we show that pVHL, through its beta-domain, binds directly to hypoxia-inducible factor (HIF), thereby targeting HIF for ubiquitination in an alpha-domain-dependent manner. This is the first function to be ascribed to the pVHL beta-domain. Furthermore, we provide the first direct evidence that pVHL has a function analogous to that of an F-box protein, namely, to recruit substrates to a ubiquitination machine. These results strengthen the link between overaccumulation of HIF and development of VHL disease.  相似文献   

2.
3.
The von Hippel-Lindau tumor suppressor protein   总被引:20,自引:0,他引:20  
  相似文献   

4.
5.
Synthesis and maintenance of primary cilia are regulated by the von Hippel-Lindau (VHL) tumour suppressor protein. Recent studies indicate that this regulation is linked to microtubule-dependent functions of pVHL such as orienting microtubule growth and increasing plus-end microtubule stability, however little is known how this occurs. We have identified the kinesin-2 motor complex, known to regulate cilia, as a novel and endogenous pVHL binding partner. The interaction with kinesin-2 facilitates pVHL binding to microtubules. These data suggest that microtubule-dependent functions of pVHL are influenced by kinesin-2.  相似文献   

6.
Zhou Q  Chen T  Ibe JC  Raj JU  Zhou G 《FEBS letters》2012,586(10):1510-1515
Although von Hippel-Lindau protein (pVHL) is known as a tumor suppressor in kidney and other organs, it remains unclear whether pVHL plays a role in lung cancer development. We investigated the role of pVHL in lung cancer cell proliferation, migration, and colonization using stable A549 cells with knockdown of pVHL. We found that knockdown of pVHL promotes epithelial-mesenchymal transition (EMT) in lung cancer cells. Knockdown of pVHL decreased tumor colonization in a tail-vein injection model and decreased cell proliferation, whereas overexpression of constitutive active HIF increased tumor colonization, suggesting a HIF-independent function of pVHL in lung. Knockdown of pVHL decreased phosphorylation of FAK and expression of integrin, suggesting that pVHL regulates lung cancer development via integrin/FAK signaling pathway.  相似文献   

7.
The von Hippel-Lindau tumor suppressor protein (pVHL) is the substrate-recognition module of an E3 ubiquitin ligase that targets the alpha subunits of hypoxia-inducible factor (HIF) for degradation in the presence of oxygen. Recognition of HIF by pVHL is linked to enzymatic hydroxylation of conserved prolyl residues in the HIF alpha subunits by members of the EGLN family. Dysregulation of HIF-target genes such as vascular endothelial growth factor and transforming growth factor alpha has been implicated in the pathogenesis of renal cell carcinomas and of hemangioblastomas, both of which frequently lack pVHL function.  相似文献   

8.
9.
pVHL, the product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase complex that targets hypoxia inducible factor α (HIF-α) for ubiquitination and degradation. Besides HIF-α, pVHL also interacts with other proteins and has multiple functions. Here, we report that pVHL inhibits ribosome biogenesis and protein synthesis. We find that pVHL associates with the 40S ribosomal protein S3 (RPS3) but does not target it for destruction. Rather, the pVHL-RPS3 association interferes with the interaction between RPS3 and RPS2. Expression of pVHL also leads to nuclear retention of pre-40S ribosomal subunits, diminishing polysomes and 18S rRNA levels. We also demonstrate that pVHL suppresses both cap-dependent and cap-independent protein synthesis. Our findings unravel a novel function of pVHL and provide insight into the regulation of ribosome biogenesis by the tumor suppressor pVHL.  相似文献   

10.
11.
Cilia are specialized organelles that play an important role in several biological processes, including mechanosensation, photoperception, and osmosignaling. Mutations in proteins localized to cilia have been implicated in a growing number of human diseases. In this study, we demonstrate that the von Hippel-Lindau (VHL) protein (pVHL) is a ciliary protein that controls ciliogenesis in kidney cells. Knockdown of pVHL impeded the formation of cilia in mouse inner medullary collecting duct 3 kidney cells, whereas the expression of pVHL in VHL-negative renal cancer cells rescued the ciliogenesis defect. Using green fluorescent protein-tagged end-binding protein 1 to label microtubule plus ends, we found that pVHL does not affect the microtubule growth rate but is needed to orient the growth of microtubules toward the cell periphery, a prerequisite for the formation of cilia. Furthermore, pVHL interacts with the Par3-Par6-atypical PKC complex, suggesting a mechanism for linking polarity pathways to microtubule capture and ciliogenesis.  相似文献   

12.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the hereditary VHL disease and sporadic clear cell renal cell carcinomas (CCRCC). VHL-associated tumors are highly vascularized, a characteristic associated with overproduction of vascular endothelial growth factor (VEGF). The VHL protein (pVHL) is a component of the ubiquitin ligase E3 complex, targeting substrate proteins for ubiquitylation and subsequent proteasomic degradation. Here, we report that the pVHL can directly bind to the human RNA polymerase II seventh subunit (hsRPB7) through its beta-domain, and naturally occurring beta-domain mutations can decrease the binding of pVHL to hsRPB7. Introducing wild-type pVHL into human kidney tumor cell lines carrying endogenous mutant non-functional pVHL facilitates ubiquitylation and proteasomal degradation of hsRPB7, and decreases its nuclear accumulation. pVHL can also suppress hsRPB7-induced VEGF promoter transactivation, mRNA expression and VEGF protein secretion. Together, our results suggest that hsRPB7 is a downstream target of the VHL ubiquitylating complex and pVHL may regulate angiogenesis by targeting hsRPB7 for degradation via the ubiquitylation pathway and preventing VEGF expression.  相似文献   

13.
E. Leonardi  A. Murgia 《FEBS letters》2009,583(22):3704-3138
The von Hippel-Lindau (VHL) tumor suppressor gene is a protein interaction hub, controlling numerous genes implicated in tumor progression. Here we focus on structural aspects of protein interactions for a list of 35 experimentally verified protein VHL (pVHL) interactors. Using structural information and computational analysis we have located three distinct interaction interfaces (A, B, and C). Interface B is the most versatile, recognizing a refined linear motif present in 17 otherwise non-related proteins. It has been possible to distinguish compatible and exclusive interactions by relating pVHL function to interaction interfaces and subcellular localization. A novel hypothesis is presented regarding the possible function of the N-terminus as an inhibitor of pVHL function.  相似文献   

14.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL tumour suppressor gene. The VHL gene product, pVHL, forms multiprotein complexes that contain elongin B, elongin C and Cul-2, and negatively regulates hypoxia-inducible mRNAs. pVHL is suspected to play a role in ubiquitination given the similarity of elongin C and Cul-2 with Skp1 and Cdc53, respectively. pVHL can also interact with fibronectin and is required for the assembly of a fibronectin matrix. Finally, pVHL, at least indirectly, plays a role in the ability of cells to exit the cell cycle. Thus, pVHL is a tumour suppressor protein that regulates angiogenesis, extracellular matrix formation and the cell cycle.  相似文献   

15.
Loss of function mutations in the von Hippel-Lindau (pVHL) tumor suppressor protein are tumorigenic. In silico analysis of the structure and folding of WT pVHL identified in its core an aromatic tetrahedron, essential for stabilizing the protein. The mutations disrupt the aromatic tetrahedron, leading to misfolding of pVHL. Using biophysical methods we confirmed the in silico predictions, demonstrating that mutant pVHL proteins have lower stability than the WT, distort the core domain and as a result reduce the ability of the protein to bind its target HIF-1α. Using bacterial pVHL-EGFP based assay we screened for osmolytes capable of restoring folding of mutant pVHL. Among them, Arginine was the most effective and was verified by in vitro assays as a potent re-folder of pVHL. This resulted in functional restoration of the mutant proteins to the level of the WT.  相似文献   

16.
The von Hippel-Lindau tumour suppressor protein (pVHL) participates in many cellular processes including oxygen sensing, microtubule stability and primary cilia regulation. Recently, we identified ATP-dependent motor complex kinesin-2 to endogenously bind the full-length variant of VHL (pVHL30) in primary kidney cells, and mediate its association to microtubules. Here we show that pVHL also endogenously binds the neuronal kinesin-2 complex, which slightly differs from renal kinesin-2. To investigate the role of kinesin-2 in pVHL mobility, we performed fluorescence recovery after photobleaching (FRAP) experiments in neuroblastoma cells. We observe that pVHL30 is a highly mobile cytoplasmic protein, which becomes an immobile centrosomal protein after ATP-depletion in living cells. This response to ATP-depletion is independent of GSK3beta-dependent phosphorylation of pVHL30. Furthermore, VHL variant alleles with reduced binding to kinesin-2 fail to respond to ATP-depletion. Accordingly, interfering with pVHL30-KIF3A interaction by either overexpressing a dominant negative construct or by reducing endogenous cellular levels of KIF3A by RNAi abolishes pVHL's response to ATP-depletion. From these data we suggest that mobility of a subcellular pool of pVHL is regulated by the ATP-dependent kinesin-2 motor. Kinesin-2 driven mobility of cytoplasmic pVHL might enable pVHL to function as a tumour suppressor.  相似文献   

17.
VHL病(Von Hippel-Lindau disease)是一种遗传性肿瘤综合征,由VHL抑癌基因突变引起.研究表明,VHL蛋白在体内具有多种功能,VHL基因突变形式和部位的差异所造成的VHL蛋白功能增加、减少或缺失可能是导致肿瘤不同表型的重要原因.  相似文献   

18.
The von Hippel-Lindau tumor suppressor gene   总被引:15,自引:0,他引:15  
  相似文献   

19.
20.
The ubiquitin-mediated degradation of hypoxia-inducible factor-α (HIF-α) by a von Hippel-Lindau tumor suppressor protein (pVHL) is mechanistically responsible for controlling gene expression due to oxygen availability. Germline mutations in the VHL gene cause dysregulation of HIF and induce an autosomal dominant cancer syndrome referred to as VHL disease. However, it is unclear whether HIF accumulation caused by VHL mutations is sufficient for tumorigenesis. Recently, we found that pVHL directly associates and positively regulates the tumor suppressor p53 by inhibiting Mdm2-mediated ubiquitination, and by subsequently recruiting p53-modifying enzymes. Moreover, VHL-deleted RCC cells showed attenuated apoptosis or abnormal cell-cycle arrest upon DNA damage, but became normal when pVHL was restored. Thus, pVHL appears to play a pivotal role in tumor suppression by participating actively as a component of p53 transactivation complex during DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号