首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract An investigation was carried out into the water relations of CAM and C3 bromeliads in their natural habitat during the dry season in Trinidad. Measurements were made of xylem tension with the pressure chamber and of cell-sap osmotic pressure and titratable acidity on crushed leaf samples. A steady-state CO2 and H2O-vapour porometer was also used so that changes in leaf water relations during individual day-night cycles could be directly related to gas-exchange patterns in situ. Xylem tension changed in parallel with transpiration rate and in general reached its maximum value in CAM bromeliads at night and in C3 bromeliads during the day. In addition, large nocturnal increases in cell-sap osmotic pressure and titratable acidity (ΔH+) typically occurred in the CAM bromeliads. The C3-CAM intermediate Guzmania monostachia showed slight nocturnal acidification, but had higher values of xylem tension during the day. Very high values of AH+ were observed in the CAM species when the tanks of the epiphytic bromeliads contained water: Aechmea nudicaulis showed a mean maximum ΔH+ of 474 mol m?3, the highest value so far observed for CAM plants. On some nights dew formed on the leaf surfaces of the epiphytes, partially curtailing gas exchange and leading to a marked decrease in xylem tension in both C3 and CAM species. Between-site comparisons were also made for a wide range of habitats from arid coastal scrub to montane rain forest. Compared with values characteristic of other life-forms, xylem tension and cell-sap osmotic pressure were low for all bromeliads, and did not differ significantly in co-occurring CAM and C3 bromeliads. Mean maximum xylem tension (10 species in total) ranged from 0.29 M Pa at the montane sites to 0.67 MPa at the most arid site, and mean minimum osmotic pressure (17 species) from 0.51 to 0.97 MPa. At the arid sites the bromeliads were exclusively CAM species, two of which (Aechmea aquilega and Bromelia plumieri) grew terrestrially in the undergrowth of the coastal scrub. Xylem tension in these species was low enough to indicate that they must be functionally independent of the substratum during the dry season. In the wetter part of Trinidad, no between-site differences in leaf water relations were found along an altitudinal gradient in the Northern Mountain Range; seasonal differences in this area were also small. Overall, leaf water relations and gas exchange in the bromeliads were strongly affected both by short-term changes in water availability and by longer-term climatic differences in the various regions of the island.  相似文献   

2.
Abstract Field measurements of the gas exchange of epiphytic bromeliads were made during the dry season in Trinidad in order to compare carbon assimilation with water use in CAM and C3 photosynthesis. The expression of CAM was found to be directly influenced by habitat and microclimate. The timing of nocturnal CO2 uptake was restricted to the end of the dark period in plants found at drier habitats, and stomatal conductance in two CAM species was found to respond directly to humidity or temperature. Total night-time CO2 uptake, when compared with malic-acid formation (measured as the dawn-dusk difference in acidity, ΔH+), could only account for 10–40% of the total ΔH+ accumulated. The remaining malic acid must have been derived from the refixation of respired CO2 (recycling). Within the genus Aechmea (12 samples from four species), recycling was significantly correlated with night temperature at the six sample sites. Recycling was lowest in A. fendleri (54% of ΔH+ derived from respired CO2), a CAM bromeliad with little water-storage parenchyma that is restricted to wetter, cooler regions of Trinidad. Gas-exchange rates of C3 bromeliads were found to be similar to those of the CAM bromeliads, with CO2 uptake from 1 to 3 μmol m?2 s?1 and stomatal conductances generally up to 100 mmol m?2 s?1. The midday depression of photosynthesis occurred in exposed habitats, although photosynthetically active radiation (PAR) limited photosynthesis in shaded habitats. CO2 uptake of the C3 bromeliad Guzmania lingulata was saturated at around 500 μmol m?2 s?1 PAR, suggesting that epiphytic plants found in the shaded forest understorey are shade-tolerant rather than shade-demanding. Transpiration ratios (TR) during CO2 fixation in CAM (Phase I and IV) and C3 bromeliads were compared at different sites in order to assess the efficiency of water utilization. For the epiphytes displaying marked uptake of CO2, TR were found to be lower than many previously published values. In addition, the average TR values were very similar for dark CO2 uptake in CAM (42 ± 41, n= 12), Phase IV of CAM (69 ± 36, n= 3) and for C3 photosynthesis (99 ± 73, n= 4) in these plants. It appears that recycling of respired CO2 by CAM bromeliads and efficient use of water in all phases of CO2 uptake are physiological adaptations of bromeliads to arid microclimates in the humid tropics.  相似文献   

3.
Summary An investigation was carried out into the photosynthetic pathways of the complete bromeliad flora of Trinidad (West Indies). Carbon-isotope ratios (13C values) were used to distinguish obligate C3 and crassulacean acid metabolism (CAM) species. Measurements were also carried out on some species in the field to test for day-night changes in leaf titratable acidity.A wide range of 13C values was found. The obligate CAM species had values of -10 to -20 and the obligate C3 species of -23 to -35 CAM was found (a) in the majority of Tillandsia spp. (Tillandsioideae) and (b) in all species of Bromelioideae. The other genera of the Tillandsioideae appeared to be at least predominantly C3. One species, Guzmania monostachia var. monostachia, was identified as a C3-CAM intermediate, and others may well exist in the Trinidad flora. The influence of factors such as source CO2, photosynthetic photon flux density and ambient humidity in determining the 13C values is discussed.The taxonomic distribution of C3 and CAM species within the Bromeliaceae is analyzed in terms of the life-forms and ecological types recognized by Pittendrigh (1948). The most xerophytic species (the light-demanding atmospherics) all show CAM and are restricted to the drier parts of the island. Most of the species with waterstoring tanks have a wide geographic distribution: these include light-demanding C3 plants and less light-demanding CAM plants. The shade-tolerant bromeliads, which show a requirement for high ambient humidity, are all C3 plants. We discuss the phylogenetic origins of CAM and the epiphytic habit in the Bromeliaceae.  相似文献   

4.
A comprehensive analysis of photosynthetic pathways in relation to phylogeny and elevational distribution was conducted in Bromeliaceae, an ecologically diverse Neotropical family containing large numbers of both terrestrial and epiphytic species. Tissue carbon isotope ratio (δ13C) was used to determine the occurrence of crassulacean acid metabolism (CAM) and C3 photosynthesis in 1893 species, representing 57% of species and all 56 genera in the family. The frequency of δ13C values showed a strongly bimodal distribution: 1074 species (57%) had values more negative than −20‰ (mode = −26.7‰), typical of predominantly daytime carbon fixation via the C3 pathway, whereas 819 species (43%) possessed values less negative than −20‰ (mode = −13.3‰), indicative of predominantly nocturnal fixation of carbon via the CAM pathway. Amongst the six almost exclusively terrestrial subfamilies in Bromeliaceae, Brocchinioideae, Lindmanioideae and Navioideae consisted entirely of C3 species, with CAM species being restricted to Hechtioideae (all species of Hechtia tested), Pitcairnioideae (all species belonging to a xeric clade comprising Deuterocohnia, Dyckia and Encholirium) and Puyoideae (21% of Puya spp.). Of the other two subfamilies, in the overwhelmingly epiphytic (plus lithophytic) Tillandsioideae, 28% of species possessed CAM photosynthesis, all restricted to the derived genus Tillandsia and tending towards the more extreme epiphytic ‘atmospheric’ life‐form. In Bromelioideae, with comparable numbers of terrestrial and epiphytic species, 90% of taxa showed CAM; included in these are the first records of CAM photosynthesis in Androlepis, Canistropsis, Deinacanthon, Disteganthus, Edmundoa, Eduandrea, Hohenbergiopsis, Lymania, Pseudananas, Ronnbergia and Ursulaea. With respect to elevational gradients, the greatest number of C3 bromeliad species were found at mid‐elevations between 500 and 1500 m, whereas the frequency of CAM species declined monotonically with increasing elevation. However, in Puya, at least ten CAM species have been recorded at elevations > 3000 m, showing that CAM photosynthesis is not necessarily incompatible with low temperatures. This survey identifies five major origins of CAM photosynthesis at a higher taxonomic level in Bromeliaceae, but future phylogenetic work is likely to reveal a more fine‐scale pattern of gains and losses of this trait, especially in ecologically diverse and widely distributed genera such as Tillandsia and Puya. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 169–221.  相似文献   

5.
Summary A study was made of the bulk-leaf water relations of selected species of epiphytic bromeliads growing in their natural habitat in Trinidad (West Indies). Field measurements were made during the rainy season at three forest sites centred on the wetter part of the island. The epiphytic bromeliads were sampled in situ using modified rock-climbing techniques at 4- to 6-h intervals during complete day-nigh cycles. Eleven species were studied that differed in their photosynthetic pathways and habitat preferences.The C3 species among the epiphytic bromeliads characteristically showed maximum values of xylem tension (measured with the pressure chamber) during the day, whereas the species with crassulacean acid metabolism (CAM) attained maximum values towards the end of the night. In addition, the CAM species showed large nocturnal increases in leaf-cell-sap osmotic pressure and titratable acidity. These nocturnal increases showed mean values of 0.601 MPa and 289 mol H+ m-3, respectively, for four species sampled at an exposed forest clearing (250 m), where CAM species were well represented. At the other two sites, a lowland forest (60 m) and a ridge forest (740 m), CAM bromeliads were found in the forest canopy, but in the lowest strata all the bromeliads were C3 species. This species distribution was associated with a marked vertical stratification of microlimate, the forest canopy being characterized by much bigger day-night changes in temperature and water-vapour-pressure deficit than the undergrowth. The C3-CAM intermediateGuzmania monostachia var.monostachia showed significant nocturnal acidification in the forest clearing but not in the understory of the lowland forest.Taken as a whole, the C3 and CAM bromeliads were very similar in the range of values observed for xylem tension and osmotic pressure, as well as in aspects of their leaf anatomy. However, epidermal trichomes covered a large percentage of the leaf surface area in xeromorphic species (e.g.Tillandsia utriculata), whereas they were poorly developed in shade-tolerant species (e.g.G. lingulata var.lingulata). The absolute values of sylem tension and osmotic pressure were low for all species. Mean minimum xylem tension during the day-night cycles was in the range of 0.18–0.23 MPa and mean maximum in the range 0.41–0.53 MPa; during periods of rain, xylem tension reached a mean minimum of 0.12 MPa. Mean minimum osmotic pressure was in the range 0.449–0.523 MPa. Such between-site and between-species differences as were observed in the water relations of the bromeliads could be related to the microclimatic conditions prevailing in the various epiphytic habitats.Abbreviations CAM crassulacean acid metabolism - PPFD photosynthetic photon flux density  相似文献   

6.
Crassulacean acid metabolism (CAM), an advanced photosynthetic pathway conferring water conservation to plants in arid habitats, has enigmatically been reported in some species restricted to extremely wet tropical forests. Of these, epiphytic Bromeliaceae may possess absorbent foliar trichomes that hinder gas‐exchange when wetted, imposing further limitations on carbon dioxide (CO2) uptake. The hypothesis that the metabolic plasticity inherent to CAM confers an ecological advantage over conventional C3 plants, when constant rainfall and mist might inhibit gas‐exchange was investigated. Gas‐exchange, fluorometry and organic acid and mineral nutrient contents were compared for the bromeliads Aechmea dactylina (CAM) and Werauhia capitata (C3) in situ at the Cerro Jefe cloud forest, Panama (annual rainfall > 4 m). Daily carbon gain and photosynthetic nutrient use efficiencies were consistently higher for A. dactylina, due to a greater CO2 uptake period, recycling of CO2 from respiration and a dynamic response of CO2 uptake to wetting of leaf surfaces. During the dry season CAM also had water conserving and photoprotective roles. A paucity of CAM species at Cerro Jefe suggests a recent radiation of this photosynthetic pathway into the wet cloud forest, with CAM extending diversity in form and function for epiphytes.  相似文献   

7.
Abstract The results described represent the first detailed measurements of gas exchange of epiphytic plants with crassulacean acid metabolism (CAM) in the humid tropics. A portable steady-state CO2 and H2O porometer was used to measure net exchange rates of CO2 and H2O vapour (JCO2, JH2O), leaf temperature (T1), air temperature (TA), air relative humidity (RH) and photosynthetically active radiation (PAR) for bromeliads in the field during the dry season in February and March 1983 on the tropical island of Trinidad. Different lengths of tubing (up to 25 m) were used so that the gas exchange could be measured of bromeliads in situ in their epiphytic habitats. Derived parameters such as leaf-air water-vapour-concentration difference (Δw), water-vapour conductance of leaves (g) and internal CO2 partial pressure (piCO2) could be calculated. The particular problems of making such measurements in the humid tropics due to high relative humidities and high dew-point temperatures are discussed. The long and often broad, strap-like leaves of bromeliads are well suited for measurements with the steady-state porometer. It is shown that CAM activity varies along the length of individual leaves, and variability between different leaves is also demonstrated. The major phases of CAM, i.e. nocturnal stomalal opening, CO2 uptake and dark fixation as malic acid (Phase I), daytime stomatal closure and light-dependent assimilation of CO2 derived from decarboxylation of the malic acid (Phase III), and late-afternoon stomatal opening with direct light-dependent assimilation of atmospheric CO2 (Phase IV) were all clearly shown by CAM bromeliads in situ. Their expression and magnitude depended on the environmental conditions. An early-morning peak of CO2 uptake as is characteristic of Phase II of CAM was not detected during the night-day transition. A bromeliad intermediate between C3 and CAM, Guzmania monostachia, showed substantial net CO2 uptake in the early morning but no net uptake integrated over the whole of the night.  相似文献   

8.
The mycorrhizal status of epiphytic, rupicolous, and terrestrial bromeliad species from the Brazilian Atlantic Rain Forest has been examined. Roots of 13 species of bromeliads were analyzed for the presence of mycorrhizal structures such as arbuscules, hyphae, and vesicles as well as other fungal structures. Rhizosphere soil was sampled to identify arbuscular mycorrhizal fungal (AMF) species associated only with terrestrial bromeliad species. Most specimens collected were epiphytic bromeliads in the genera Aechmea, Bilbergia, Nidularium, Tillandsia, and Vriesea. Differentiating structures of AMF were found in only three species of bromeliads. The pattern of mycorrhizal colonization was mainly internal, and external mycelium and arbuscules were observed only in the terrestrial Nidularium procerum. Root endophytes with dark brown septate mycelium, thin external hyphae, and Rhizoctonia-like sclerotia were also detected in some root segments. A total of ten spore morphotypes were recovered from the rhizosphere of N. procerum, with Acaulospora mellea, A. foveata, and Glomus sp. being the most common species recovered. Our study demonstrated that most of the epiphytic species are not associated with AMF. We attribute this mainly to the exposed bare root conditions found in epiphytic bromeliads.  相似文献   

9.
The Neotropical Bromeliaceae display an extraordinary level of ecological variety, with species differing widely in habit, photosynthetic pathway and growth form. Divergences in stomatal structure and function, hitherto understudied in treatments of bromeliad evolutionary physiology, could have been critical to the generation of variety in ecophysiological strategies among the bromeliads. Because humidity is a key factor in bromeliad niches, we focussed on stomatal responses to vapour pressure deficit (VPD). We measured the sensitivity of stomatal conductance and assimilation rate to VPD in eight C3 bromeliad species of contrasting growth forms and ecophysiological strategies and parameterised the kinetics of stomatal responses to a step change in VPD. Notably, three tank‐epiphyte species displayed low conductance, high sensitivity and fast kinetics relative to the lithophytes, while three xeromorphic terrestrial species showed high conductance and sensitivity but slow stomatal kinetics. An apparent feedforward response of transpiration to VPD occurred in the tank epiphytes, while water‐use efficiency was differentially impacted by stomatal closure depending on photosynthetic responses. Differences in stomatal responses to VPD between species of different ecophysiological strategies are closely linked to modifications of stomatal morphology, which we argue has been a pivotal component of the evolution of high diversity in this important plant family.  相似文献   

10.
The physiological ecology of members of the Bromeliaceae is reviewed with an emphasis on photosynthesis and water relations. Terrestrial and epiphytic species are, for the most part, treated separately. Water relations, photosynthetic pathways, and photosynthetic responses to light, temperature, drought, atmospheric moisture, elemental nutrients, and pollutants are considered from an ecological perspective. In addition, appendices provide values of numerous ecophysiological parameters for all species studied thus far. Results of this review include the following: (1) the ecophysiology of terrestrial and epiphytic species is surprisingly similar; (2) approximately two-thirds of bromeliads are CAM plants and occupy arid sites or are epiphytic; (3) many species are adapted to full or partial shade, yet can grow in full sunlight; (4) photosynthesis is optimal when day temperatures are warm and night temperatures are cool; (5) species with heavy trichome indumenta on their leaf surfaces are capable of absorbing atmospheric water vapor, yet improvement of tissue water relations is unlikely; (6) heavy trichome covers also suppress CO2 exchange when leaf surfaces are wetted; (7) high levels of recycling of respiratory CO2 via CAM occur in many species, especially under stress; and (8) tissue osmotic and water potentials of nearly all bromeliads investigated are seldom more negative than -1.0 MPa. A potential explanation of the mechanisms underlying maintenance of high tissue water potentials despite large water losses during droughts is discussed. In summary, the diversity of physiological adaptations to the environment in the few bromeliads studied thus far is impressive, but likely will be surpassed with investigation of more species in the Bromeliaceae.  相似文献   

11.
The restinga comprises coastal vegetation formations which dominate the Atlantic seaboard of Brazil. Exposed sand ridges and associated lagoon systems have poorly developed soils subject to pronounced water deficits. Distinct vegetation zones support a high diversity of life forms, and a comparative study has been undertaken to investigate interactions between degree of exposure, nutrient supply and photosynthetic pathway (C3, or CAM) in selected species across the restinga. A number of species occurring throughout the restinga were chosen as representative species of different life forms, comprising C3 pioneer shrubs (Eugenia rotundifolia and Erythroxylum ovalifolium), impounding (tank) terrestrial bromeliad (Neoregelia cruenta: CAM) and the atmospheric epiphyte (Tillandsia stricta: CAM). Comparisons of plant and soil nutrient composition, and airborne deposition were conducted for each zone. Soil nutrient content and organic matter were closely related, reaching a maximum in zone 4, the seaward face of the inner dune. Salt concentration in leaves was independent of atmospheric deposition for the terrestrial species, in contrast to the atmospheric epiphyte T. stricta. In the slack area, vegetation formed characteristic “islands” with the soil beneath enriched in nutrients, suggesting a complex interplay between plants and soil during the development of vegetation succession. Here, two additional trees were investigated, C3 and CAM members of the Clusiaceae, respectively Clusia lanceolata and C. fluminensis. Stable isotope composition of nitrogen (δ15N) was generally more negative (depleted in 15N) in plants with low total nitrogen content. This was exemplified by the atmospheric bromeliad, T. stricta, with an N content of 2.91 g/kg and δ15N of ?12.3 per mil. Stable isotopes of carbon (δ13C) were used to identify the distribution of photosynthetic pathways, and while the majority of bromeliads and orchids were CAM, analysis of the soil organic matter suggested that C3 plants made the major contribution in each zone of the restinga. Since δ13C of plant material also suggested that water supply was optimal in zone 4, we conclude that succession and high diversity in the restinga is dependent on exposure, edaphic factors, and perhaps a critical mass of vegetation required to stabilize nutrient relations of the system.  相似文献   

12.
Studies of geographic distribution and physiological adaptations in theBromeliaceae of coastal Chile and Peru provide insights into the ecological patterns of habit selection and speciation. The hyperarid coastal Atacama and Peruvian Deserts along the Pacific coast of South America contain a surprisingly rich flora of bromeliad species. These include representatives of all threeBromeliaceae subfamilies: two terrestrialBromelioideae and two terrestialPitcairnioideae, all with rooted growth morphologies, and 14 species ofTillandsioideae (allTillandsia) with epiphytic and unrooted, terrestraial representatives. TheBromelioideae are represented by two species ofPuya Molina, one each in Peru and Chile. ThePitcairnioideae are represented by two genera,Deuterocohnia andPitcairnia, with one species each. The 14Tillandsia species are distributed in five subgenera which have successfully invaded the coastal deserts, and include both widespread and local endemics with xeromorphic adaptations. All theTillandsia species are epiphytic in the broad sense, but in addition to growing on plants, they are found growing on rocks (i.e. saxicolous or epilithic). Six species (T. purpurea, T. latifolia, T. capillaris, T. marconae, T. werdermanii, andT. landbeckii) have evolved a highly specialized substrate ecology where they grow essentially unrooted on sand (i.e. epiarenic). Nowhere in the world are bromeliads more dominant or have more biomass than in these coastal species growing on sand. Many of these species grow at the absolute limits of vascular plant tolerance, with the entire community consisting of a singleTillandsia species. Rooted, terrestrial bromeliads in the coastal lomas formations (allPitcairnioideae) include CAM, C3, and C3-CAM flexible taxa in their metabolic systems, the CAM species growing in the most arid sites along the coast and C3 species growing in the most mesic habitats within the center of the coastal fog belt where fog moisture input is highest. All of the epiphyticTillandsia species of the coastal desert region utilize CAM metabolism entirely or in part. At least two species,T. latifolia andT. tragophoba, utilize a flexible C3-CAM mode of carbon fixation. Whereas most of the desert-inhabitingTillandsia species have relatively narrow leaves covered by water absorbing trichomes on their surface,T. multiflora in northern Peru andT. tragophoba in northern Chile are tank-forming species where the bases of the leaves form a water-containing reservoir. The occurrence of the latter as a local endemic in hyperarid northern Chile is remarkable since it occurs thousands of kilometers south of its closest potential relatives in the central Andes.  相似文献   

13.
Crassulacean acid metabolism (CAM) is one of the photosynthetic pathways regarded as adaptations to water stress in land plants. Little is known about correlations among the level of CAM activity, environment of habitat, life form, and phylogenetic relationship of a plant group from an evolutionary perspective. We examined these relationships in 18 species of Cymbidium (Orchidaceae) because the genus shows distinctive diversification of habitats and life forms. The photosynthetic type was classed into three categories, strong CAM, weak CAM, and C3 on the basis of CAM activity. CAM expression in Cymbidium was confined to the epiphytic and lithophytic species. Especially, all of these species from tropical to subtropical rainforest exhibited CAM activity. On the other hand, the terrestrial species always exhibited C3 metabolism irrespective of their varied habitats. Regarding the evolution of photosynthetic characters, weak CAM was the ancestral state in Cymbidium and strong CAM and C3 metabolism occurred subsequently. The evolution of strong CAM likely enabled Cymbidium to extend to exposed sites in tropical lowland where marked water stress exists. Further, different levels of CAM activity characterized each species and such potential plasticity of CAM may realize the radiation of Cymbidium into sites with different environmental conditions.  相似文献   

14.
Crassulacean acid metabolism (CAM) is a photosynthetic pathway that significantly increases water use efficiency in plants. It has been proposed that CAM photosynthesis, which evolved from the ancestral C3 pathway, has played a role in the diversification of some prominent plant groups because it may have allowed them to colonize and successfully spread into arid or semi‐arid environments. However, the hypothesis that CAM photosynthesis constitutes an evolutionary key innovation, thereby enhancing diversification rates of the clades possessing it, has not been evaluated quantitatively. We tested whether CAM photosynthesis is a key innovation in the Bromeliaceae, a large and highly diversified plant family that has successfully colonized arid environments. We identified five pairs of sister groups with and without the CAM feature, including 31 genera and over 2000 species. In all five cases, the clades with CAM photosynthesis were more diverse than their C3 counterparts. We provide quantitative evidence that the evolution of CAM photosynthesis is significantly associated with increased diversification in Bromeliaceae and thus constitutes an evolutionary key innovation. We also found preliminary evidence of an association between the CAM pathway and growth habit in bromeliads, with terrestrial species being more likely to show CAM photosynthesis than epiphytic species. To our knowledge, this is the first case of a physiological attribute shown to be a key innovation in plants. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 480–486.  相似文献   

15.
Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non‐specialized, tank‐forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait‐network architecture, suggesting that rewiring of trait‐networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra‐xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure–function relationships in the generation and maintenance of ecological diversity.  相似文献   

16.
Although spiders are a very diverse group on vegetation, their associations with plants are poorly known. Some salticid species specifically use Bromeliaceae as host plants in some regions of South America. In this study, I report the geographic range of these spider‐bromeliad associations, and whether the spiders inhabit particular bromeliad species and vegetation types, as well as open areas or interior of forests. Nine salticid species were found to be associated with up to 23 bromeliad species in cerrados (savanna‐like vegetation), semideciduous and seasonal forests, coastal sand dune vegetation, restingas, inselbergs, highland forests, chacos, and rain forests at 47 localities in Brazil, Paraguay, Bolivia, and Argentina. Some species were typically specialists, inhabiting almost exclusively one bromeliad species over a large geographic range (e.g., Psecas chapoda on Bromelia balansae), whereas others were generalists, occurring on up to 7–8 bromeliad species (e.g., Psecas sp., Eustiromastix nativo, and Coryphasia sp. 1). The regional availability of bromeliad species among habitats may explain this pattern of host plant use. More jumping spiders were found on bromeliads in open areas than on bromeliads in the interior of forests. These results show that several jumping spider species may be strictly associated with the Bromeliaceae in the Neotropics. This is one of the few studies to show host‐specific associations for spiders on a particular plant type over a wide geographic range.  相似文献   

17.
We compared the diversity, taxonomic composition, and pollination syndromes of bromeliad assemblages and the diversity and abundance of hummingbirds along two climatically contrasting elevational gradients in Bolivia. Elevational patterns of bromeliad species richness differed noticeably between transects. Along the continuously wet Carrasco transect, species richness peaked at mid‐elevations, whereas at Masicurí most species were found in the hot, semiarid lowlands. Bromeliad assemblages were dominated by large epiphytic tank bromeliads at Carrasco and by small epiphytic, atmospheric tillandsias at Masicurí. In contrast to the epiphytic taxa, terrestrial bromeliads showed similar distributions across both transects. At Carrasco, hummingbird‐pollination was the most common pollination mode, whereas at Masicurí most species were entomophilous. The proportion of ornithophilous species increased with elevation on both transects, whereas entomophily showed the opposite pattern. At Carrasco, the percentage of ornithophilous bromeliad species was significantly correlated with hummingbird abundance but not with hummingbird species richness. Bat‐pollination was linked to humid, tropical conditions in accordance with the high species richness of bats in tropical lowlands. At Carrasco, mixed hummingbird/bat‐pollination was found especially at mid‐elevations, i.e., on the transition between preferential bat‐pollination in the lowlands and preferential hummingbird‐pollination in the highlands. In conclusion, both richness patterns and pollination syndromes of bromeliad assemblages varied in distinct and readily interpretable ways in relation to environmental humidity and temperature, and bromeliad pollination syndromes appear to follow the elevational gradients exhibited by their pollinators.  相似文献   

18.
Bromeliads can have terrestrial and epiphytic habits. Therefore, they have developed probably different mechanisms for the uptake of nutrients from distinct sources such as the pedosphere and the atmosphere. Many bromeliads, such as the epiphytes, absorb water and nutrients almost exclusively via their foliar trichomes. In contrast, terrestrial bromeliads essentially use their roots to withdraw the nutrients from the soil. The aim of this study was to compare nitrogen (N) nutrition between a terrestrial, Ananas comosus (L.) Merr., and an epiphytic, Vriesea gigantea Gaudich., bromeliad. The in vitro absorption of [3H]glycine and [3H]glutamine was investigated. Plants were also grown in vitro with NH4+, glutamine (Gln) or glycine (Gly) as N sources, and the amino acid profile was analyzed. Ammonium treatment had little effect upon the A. comosus amino acid profile, while asparagine was the main amino acid accumulated in V. gigantea after 3 d in a medium with this nitrogen source. This suggests that V. gigantea accumulate N in compounds with high N/C ratio, allowing it to store higher N level when it is available in epiphytic environment. The two species were able to take up amino acids in vitro, although V. gigantea had a higher rate of amino acid uptake than the terrestrial bromeliad, A. comosus. For both species, Gly was taken up in a higher rate than Gln. The data support the idea that V. gigantea has a luxury consumption when inorganic and organic N are available in the environment, which does not happen in the case of the terrestrial bromeliad A. comosus. It has a more stable source of nutrients, the soil. We can also suggest that amino acids such as Gly, Gln and others present in the bromeliad tank water may be important N sources for V. gigantea and other epiphytic bromeliads in natural habitats.  相似文献   

19.
Epiphytic bromeliads have no contact with the pedosphere, so they need to draw their nutrients from the atmosphere as well as from the host tree and animal debris. Terrestrial bromeliads, like Ananas comosus, generally depend on the soil as their main nutrient source. The aim of this study was to investigate and compare some aspects of the nitrogen metabolism of two bromeliads with different growth habits: Ananas comosus, a terrestrial bromeliad, and Vriesea gigantea, an epiphytic tank bromeliad. Nitrogen-starved plants were grown in vitro for 3, 7, 15, 30, and 60 days, either with 5 mmol L−1 ammonium [(NH4)2SO4] or urea as the sole nitrogen source. When NH4+ was supplied to the plants, it stimulated a faster increase of chlorophyll content in A. comosus than in V. gigantea. In the presence of urea, after 15 days of the plants in culture, there was a significant increase in tissue free-NH4+ and total amino acids for V. gigantea only. V. gigantea presented a higher level of total free amino acids than A. comosus when nitrogen was supplied to the plants. Asparagine was the main amino acid accumulated in both bromeliads when plants were transferred to the medium with nitrogen. When the ratio of the main individual free amino acids between the bromeliads grown in NH4+ and urea was compared, values such as 7.2 for asparagine, 5.3 for glutamate, and 1.8 for aspartate in A. comosus, and values such as 2.3 for asparagine, 1.1 for glutamate and 0.7 for aspartate in V. gigantea were observed, demonstrating that the last is more efficient in assimilating urea. The results prompted us to support the idea that V. gigantea, an epiphytic tank bromeliad, is better adapted to absorb and assimilate organic nitrogen, such as urea, while A. comosus, a terrestrial plant, is better adapted to inorganic nitrogen forms, such as ammonium. The natural exposure of tank bromeliads to urea is discussed in the paper.  相似文献   

20.
The epiphytic tank bromeliads Nidularium procerum (a CAM plant) and TV. innocentii (a C3 plant) can be found as terrestrial plants in the understory of a Brazilian swamp forest. They occur in segregated patches differing in light and flooding regimes; however, plants of each species are found in the other species preferred habitat in a narrow boundary zone where the two populations meet. Although ecophysiological factors were previously thought to dictate the distribution of these species at this site, we suggest that their current distribution is probably related to colonization history and subsequent competition for space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号