首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Paddlefish use their electrosense to locate small water fleas (daphnia), their primary prey, in three-dimensional space. High sensitivity and a representation of object location are essential for this task. High sensitivity can be achieved by convergence of information from a large number of receptors and object location is usually represented in the nervous system by topographic maps. However the first electrosensory center in the brain, the dorsal octavolateral nucleus in the hindbrain, is neither topographically organized nor does it show a higher sensitivity than primary afferent fibers. Here, we investigated the response properties of electrosensory neurons in the dorsal octavolateral nucleus (DON), the lateral mesencephalic nucleus (LMN) and the tectum mesencephali (TM). LMN units are characterized by large receptive fields, which suggest a high degree of convergence. TM units have small receptive fields and are topographically arranged, at least in the rostro-caudal axis, the only dimension we could test. Well-defined receptive fields, however, could only be detected in the TM with a moving DC stimulus. The receptive fields of TM units, as determined by slowly scanning the rostrum and head with a 5 Hz stimulus, were very large and frequently two or more receptive fields were present. The receptive fields for LMN units were located in the anterior half of the rostrum whereas TM units had receptive fields predominantly on the head and at the base of the rostrum. A detailed analysis of the prey catching behavior revealed that it consists of two phases that coincide with the location of the receptive fields in LMN and TM, respectively. This suggests that LMN units are responsible for the initial orienting response that occurs when the prey is alongside the anterior first half of the rostrum. TM units, in contrast, had receptive fields at locations where the prey is located when the fish opens its mouth and attempts the final strike.  相似文献   

2.
Paddlefish are uniquely adapted for the detection of their prey, small water fleas, by primarily using their passive electrosensory system. In a recent anatomical study, we found two populations of secondary neurons in the electrosensory hind brain area (dorsal octavolateral nucleus, DON). Cells in the anterior DON project to the contralateral tectum, whereas cells in the posterior DON project bilaterally to the torus semicircularis and lateral mesencephalic nucleus. In this study, we investigated the properties of both populations and found that they form two physiologically different populations. Cells in the posterior DON are about one order of magnitude more sensitive and respond better to stimuli with lower frequency content than anterior cells. The posterior cells are, therefore, better suited to detect distant prey represented by low-amplitude signals at the receptors, along with a lower frequency spectrum, whereas cells in the anterior DON may only be able to sense nearby prey. This suggests the existence of two distinct channels for electrosensory information processing: one for proximal signals via the anterior DON and one for distant stimuli via the posterior DON with the sensory input fed into the appropriate ascending channels based on the relative sensitivity of both cell populations.  相似文献   

3.
The response properties of 322 single units in the electroreceptive midbrain (lateral mesencephalic nucleus, LMN) of the thornback ray, Platyrhinoidis triseriata, were studied using uniform and local electric fields. Tactile, visual, or auditory stimuli were also presented to test for multimodality. Most LMN electrosensory units (81%) are silent in the absence of stimulation. Those with spontaneous activity fired irregularly at 0.5 to 5 impulses/s, the lower values being more common. Two units had firing rates greater than 10/s. Midbrain electrosensory units are largely phasic, responding with one or a few spikes per stimulus onset or offset or both, but the adaptation characteristics of some neurons are complex. The same neuron can exhibit phasic or phasic-tonic responses, depending upon orientation of the electric field. Tonic units without any initial phasic over-shoot were not recorded. Even the phasic-tonic units adapt to a step stimulus within several seconds. Unit thresholds are generally lower than 0.3 microV/cm, the weakest stimulus delivered, although thresholds as high as 5 microV/cm were recorded, Neuronal responses reach a maximum, with few exceptions, at 100 microV/cm and decrease rapidly at higher intensities. LMN neurons are highly sensitive to stimulus repetition rates: most responded to frequencies of 5 pulses/s or less; none responded to rates greater than 10/s. Three distinct response patterns are recognized. Best frequencies in response to sinusoidal stimuli range from 0.2 Hz (the lowest frequency delivered) to 4 Hz. Responses decrease rapidly at 8 Hz or greater, and no units responded to frequencies greater than 32 Hz. Most LMN neurons have small, well defined excitatory electroreceptive fields (RFs) exhibiting no surround inhibition, at least as detectable by methods employed here. Seventy-eight percent of units recorded had RFs restricted to the ventral surface: of these, 98% were contralateral. The remaining 22% of units had disjunct dorsal and ventral receptive fields. Electrosensory RFs on the ventral surface are somatotopically organized. Anterior, middle, and posterior body surfaces are mapped at the rostral, middle, and caudal levels, respectively, of the contralateral LMN. The lateral, middle, and medial body are mapped at medial, middle, and lateral levels of the nucleus. Moreover, the RFs of all units isolated in a given dorsoventral electrode track are nearly superimposable. About 40% of LMN, measured from the dorsal surface, is devoted to input from ventral electroreceptors located in a small region rostral and lateral to the mouth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. Ampullary electroreceptors in elasmobranchs are innervated by fibers of the ALLN, which projects to the dorsal octavolateralis nucleus (DON). The purpose of this study is to examine the response characteristics of ALLN fibers and DON neurons to weak D.C. and sinusoidal electric field stimuli presented as local dipole fields. 2. ALLN fibers respond to presentation of D.C. fields with a phasic burst, followed by a more slowly adapting period of firing. Ascending efferent neurons (AENs) in the DON respond to stimuli with a similar initial burst, which adapts more quickly. 3. Type 1, 2, and 3 neurons are possible local interneurons or commissural DON neurons. Type 1 neurons demonstrate response properties similar to those of AENs. Type 2 cells demonstrated slowly adapting responses to excitatory stimuli, the duration of the response increased with the amplitude of the stimulus. Type 3 neurons demonstrated an increased rate of firing, but the response lacked any specific temporal characteristics. 4. ALLN fibers typically have receptive fields consisting of a single ampulla. The receptive field sizes of DON neurons exhibited varying degrees of convergence for different cell types. 5. Responses of ALLN fibers and DON neurons to weak sinusoidal stimuli demonstrated very similar frequency response characteristics for all cell types. The peak sensitivity of electrosensory neurons was between 5-10 Hz.  相似文献   

5.
The effects of waking and sleep on the response properties of auditory units in the ventral cochlear nucleus (CN) were explored by using extracellular recordings in chronic guinea-pigs. Significant increases and decreases in firing rate were detected in two neuronal groups, a) the "sound-responding" and b) the "spontaneous" (units that do not show responses to any acoustic stimuli controlled by the experimenter). The "spontaneous" may be considered as belonging to the auditory system because the corresponding units showed a suppression of their discharge when the receptor was destroyed. The auditory CN units were characterized by their PSTH in response to tones at their characteristic frequency and also by the changes in firing rate and probability of discharge evaluated during periods of waking, slow wave and paradoxical sleep. The CNS performs functions dependent on sensory inputs during wakefulness and sleep phases. By studying the auditory input at the level of the ventral CN with constant sound stimuli, it was shown that, in addition to the firing rate shifts, some units presented changes in the temporal probability of discharge, implying central actions on the corresponding neurons. The mean latency of the responses, however, did not show significant changes throughout the sleep-waking cycle. The auditory efferent pathways are postulated to modulate the auditory input at CN level during different animal states. The probability of firing and the changes in the temporal pattern, as shown by the PSTH, are thus dependent on both the auditory input and the functional brain state related to the sleep-waking cycle.  相似文献   

6.
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.  相似文献   

7.
Recordings were made in the chick cochlear nucleus from neurons that are sensitive to very low frequency sound. The tuning, discharge rate response and phase-locking properties of these units are described in detail. The principal conclusions are: 1. Low frequency (LF) units respond to sound frequencies between 10-800 Hz. Best thresholds average 60 dB SPL, and are occasionally as low as 40 dB SPL. While behavioral thresholds in this frequency range are not available for the domestic chick, these values are in good agreement with the pigeon behavioral audiogram (Kreithen and Quine 1979). 2. About 60% of the unit population displays tuning curves resembling low-pass filter functions with corner frequencies between 50-250 Hz. The remaining units have broad band-pass tuning curves. Best frequencies range from 50-300 Hz. 3. Spontaneous discharge rate was analyzed quantitatively for LF units recorded from nucleus angularis. The distribution of spontaneous rates for LF units is similar to that seen from higher CF units (300-5000 Hz) found in the same nucleus. However, the spontaneous firing of LF units is considerably more regular than that of their higher CF counterparts. 4. Low frequency units with low spontaneous rates (SR's less than 40 spikes/s) show large driven rate increases and usually saturate by discharging once or twice per stimulus cycle. Higher SR units often show no driven rate increases. 5. All LF units show strong phase-locking at all excitatory stimulus frequencies. Vector strengths as high as 0.98 have been observed at moderate sound levels. 6. The preferred phase of discharge (relative to the sound stimulus) increases with stimulus frequency in a nearly linear manner. This is consistent with the LF units being stimulated by a traveling wave. The slope of these phase-frequency relationships provides an estimate of traveling wave delay. These delays average 7.2 ms, longer than those seen for higher CF auditory brainstem units. These observations suggest that the peripheral site of low frequency sensitivity is the very distal region of the basilar papilla, an area whose morphology differs significantly from the rest of the chick basilar papilla. 7. LF units are described whose response to sound is inhibitory at frequencies above 50 Hz.  相似文献   

8.
The principal component analysis of matrices composed of spike numbers generated by visual neurons of cats in response to motion of simple and complex stimuli revealed vector encoding. Responses of detectors of moving dot direction and detectors of oblique line orientation are encoded independently in V1 and V2 cortices by excitation of two cardinal neurons. Each pair of these neurons generates sine and cosine functions. Responses of detectors in the association cortex selective to specific orientation of moving stripes depend on the activity of four cardinal neurons which sum up the excitation incoming from the direction and orientation channels.  相似文献   

9.
Neural coding in the chick cochlear nucleus   总被引:5,自引:0,他引:5  
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus-nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: 1. Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. 2. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. 3. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. 4. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as 'choppers', while units with CF's below 1000 Hz are 'primary-like'. Several 'onset' units are also seen in NA. In contrast, all NM units show 'primary-like' response. 5. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. 6. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984).  相似文献   

10.
Changes in neuronal discharge pattern due to direct mechanical stimulation through the recording extracellular micropipette were studied in 30 neurons of the rat's mesencephalic reticular formation. Results parallel closely the polarization experiments, i.e. changing the firing rate one group of neurons shows stable pattern whereas the other change their pattern significantly. It is concluded that the first group presumably reflects the decrease in membrane potential only, whereas in the second group overall synaptic inflow is influenced.  相似文献   

11.
The electrosensory and mechanosensory lateral line systems of fish exhibit many common features in their structural and functional organization, both at the sensory periphery as well as in central processing pathways. These two sensory systems also appear to play similar roles in many behavioral tasks such as prey capture, orientation with respect to external environmental cues, navigation in low-light conditions, and mediation of interactions with nearby animals. In this paper, we briefly review key morphological, physiological, and behavioral aspects of these two closely related sensory systems. We present arguments that the information processing demands associated with spatial processing are likely to be quite similar, due largely to the spatial organization of both systems and the predominantly dipolar nature of many electrosensory and mechanosensory stimulus fields. Demands associated with temporal processing may be quite different, however, due primarily to differences in the physical bases of electrosensory and mechanosensory stimuli (e.g. speed of transmission). With a better sense of the information processing requirements, we turn our attention to an analysis of the functional organization of the associated first-order sensory nuclei in the hindbrain, including the medial octavolateral nucleus (MON), dorsal octavolateral nucleus (DON), and electrosensory lateral line lobe (ELL). One common feature of these systems is a set of neural mechanisms for improving signal-to-noise ratios, including mechanisms for adaptive suppression of reafferent signals. This comparative analysis provides new insights into how the nervous system extracts biologically significant information from dipolar stimulus fields in order to solve a variety of behaviorally relevant problems faced by aquatic animals.  相似文献   

12.
The nucleus of the solitary tract (NTS), a termination site for primary afferent fibers from baroreceptors and other peripheral cardiovascular receptors, contains blood pressure-sensitive neurons, some of which have rhythmic activity locked to the cardiac cycle, making them key components of the central pathway for cardiovascular regulation. The paratrigeminal nucleus (Pa5), a small collection of medullary neurons in the dorsal lateral spinal trigeminal tract, like the NTS, receives primary somatosensory inputs of glossopharyngeal, vagal, and other nerves. Recent studies show that the Pa5 has efferent connections to the rostroventrolateral reticular nucleus (RVL), NTS, and ambiguous nucleus, suggesting that its structure may play a role in the baroreceptor reflex modulation. In the present study, simultaneous recording from multiple single neurons in freely behaving rats challenged with i.v. phenylephrine administration, showed that 83% of NTS units and 72% of Pa5 units were baroreceptor sensitive. Whereas most of the baroreceptor-sensitive NTS and Pa5 neurons (86 and 61%, respectively) increased firing rate during the ascending phase of the pressor response, about 16% of Pa5 and NTS baroreceptor-sensitive neurons had a decreased firing rate. On one hand, the decrease in firing rate occurred during the ascending phase of the pressor response, indicating sensitivity to rapid changes in arterial pressure. On the other hand, the increases in neuron activity in the Pa5 or NTS occurred during the entire pressor response to phenylephrine. Cross-correlational analysis showed that 71% of Pa5 and 93% of NTS baroreceptor-activated neurons possessed phasic discharge patterns locked to the cardiac cycle. These findings suggest that the Pa5, like the NTS, acts as a terminal for primary afferents in the medullary-baroreflex or cardiorespiratory-reflex pathways.  相似文献   

13.
The baroreceptor neurons serve as the primary transducers of blood pressure for the autonomic nervous system and are thus critical in enabling the body to respond effectively to changes in blood pressure. These neurons can be separated into two types (A and C) based on the myelination of their axons and their distinct firing patterns elicited in response to specific pressure stimuli. This study has developed a comprehensive model of the afferent baroreceptor discharge built on physiological knowledge of arterial wall mechanics, firing rate responses to controlled pressure stimuli, and ion channel dynamics within the baroreceptor neurons. With this model, we were able to predict firing rates observed in previously published experiments in both A- and C-type neurons. These results were obtained by adjusting model parameters determining the maximal ion-channel conductances. The observed variation in the model parameters are hypothesized to correspond to physiological differences between A- and C-type neurons. In agreement with published experimental observations, our simulations suggest that a twofold lower potassium conductance in C-type neurons is responsible for the observed sustained basal firing, where as a tenfold higher mechanosensitive conductance is responsible for the greater firing rate observed in A-type neurons. A better understanding of the difference between the two neuron types can potentially be used to gain more insight about pathophysiology and treatment of diseases related to baroreflex function, e.g. in patients with autonomic failure, a syndrome that is difficult to diagnose in terms of its pathophysiology.  相似文献   

14.
We simulated the effects of delivering focal electrical stimuli to the central nervous system to modulate the firing rate of neurons and alleviate motor disorders. Application of these stimuli to the spinal cord to reduce the increased excitability of motoneurons and resulting spasticity after spinal cord injury (SCI) was examined by means of a morphologically detailed computer model of a spinal motoneuron. High-frequency sinusoidal and rectangular pulses as well as biphasic charge-balanced and charge-imbalanced pulses were examined. Our results suggest that suprathreshold high-frequency sinusoidal or rectangular current pulses could inactivate the Na+ channels in the soma and initial segment, and block action potentials from propagating through the axon. Subthreshold biphasic charge-imbalanced pulses reduced the motoneuronal firing rate significantly (up to approximately 25% reduction). The reduction in firing rate was achieved through stimulation-induced hyperpolarization generated in the first node of Ranvier. Because of their low net DC current, these pulses could be tolerated safely by the tissue. To deliver charge-imbalanced pulses with the lowest net DC current and induce the largest reduction in motoneuronal firing rate, we studied the effect of various charge-imbalanced pulse parameters. Short pulse durations were found to induce the largest reduction in firing rate for the same net DC level. Subthreshold high-frequency sinusoidal and rectangular current pulses and low-frequency biphasic charge-balanced pulses, on the other hand, were ineffective in reducing the motoneuronal firing rate. In conclusion, the proposed electrical stimulation paradigms could provide potential rehabilitation interventions for suppressing the excitability of neurons to reduce the severity of motor disorders after injury to the central nervous system.  相似文献   

15.
Mormyrid fish use active electrolocation to detect and analyze objects. The electrosensory lateral line lobe in the brain receives input from electroreceptors and an efference copy of the command to discharge the electric organ. In curarized fish, we recorded extracellularly from neurons of the electrosensory lateral line lobe while stimulating in the periphery with either a local point stimulus or with a more natural whole-body stimulus. Two classes of neurons were found: (1) three types of E-cells, which were excited by a point stimulus; and (2) two types of I-cells, which were inhibited by point stimulus and responded with excitation to the electric organ corollary discharge. While all neurons responded to a point stimulus, only one out of two types of I-units and two of the three types of E-units changed their firing behavior to a whole-body stimulus or when an object was present. In most units, the responses to whole-body stimuli and to point stimuli differed substantially. Many electrosensory lateral line lobe units showed neural plasticity after prolonged sensory stimulation. However, plastic effects during whole body stimulation were often unlike those occurring during point stimuli, suggesting that under natural conditions electrosensory lateral line lobe network effects play an important role in shaping neural plasticity.  相似文献   

16.
Summary The activation and action of the octavolateralis efferent system was studied by chronic recordings of discharge patterns from putative efferent and single primary afferent neurons in alert, free-swimming toadfish. Efferent axons isolated in the anterior lateral line nerve showed phasic discharges following touch stimuli applied to the head or trunk and demonstrated sustained discharges to visual stimuli. Resting discharge patterns of primary afferents were categorized into irregular, burster, regular, and silent classes. Afferent discharges were often modulated by low frequency (< 1 Hz) water movement around the head generated during respiratory movements. When fish with recording electrodes implanted in the lateral line nerve were visually stimulated, modulated peak discharges and average (DC) firing rates were inhibited in irregular-type units only. Inhibition of irregular-type afferent neurons also followed visual presentation of natural prey and persisted long after prey stimuli were removed from view. The inhibitory action upon lateralis afferents when activated by biologically significant visual stimuli leads to the hypothesis that the octavolateralis efferent system functions in the peripheral processing of information carried by the lateral line in natural settings.Abbreviations DC average - IO infraorbital - IPSPs inhibitory postynaptic potentials - MXC maxillary canal - OMC operculomandibular canal - SOC supraorbital canal  相似文献   

17.
Patterns in the discharge of simple and complex visual cortical cells   总被引:1,自引:0,他引:1  
The activity of visual cortical neurons (area 17) was recorded in anaesthetized cats in response to sinusoidal drifting gratings. The statistical structure of the discharge of simple and complex cells has been studied as a function of the various parameters of a drifting grating: spatial frequency, orientation, drifting velocity and contrast. For simple cells it has been found that the interspike interval distributions in response to drifting gratings of various spatial frequencies differ only by a time scale factor. They can be reduced to a unique distribution by a linear time transformation. Variations in the spatial frequency of the grating induce variations in the mean firing rate of the cell but leave unchanged the statistical structure of the discharge. On the contrary, the statistical structure of the simple cell activity changes when the contrast or the velocity of the stimulus is varied. For complex cells it has been found that the invariance property described above for simple cells is not valid. Complex cells present in their activity in response to visual stimuli two different firing patterns: spikes organized in clusters and spikes that do not show this organization ('isolated spikes'). The clustered component is the only component of the complex cell discharge that is tuned for spatial frequency and orientation, while the isolated spike component is correlated with the contrast of the stimulus.  相似文献   

18.
Shen X  Ruan X  Zhao H 《PloS one》2012,7(4):e34323
Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 μA, 0.5 Hz) or tetanic stimulation (80 μA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ~90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms.  相似文献   

19.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried.

Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons.

These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

20.
The aim of this work was to verify whether and how spontaneous or glutamate(GLU)-induced enhancements of the neuronal firing rate modified the responsiveness of the vestibular neurons to microiontophoretic application of serotonin (5-HT). During experiments performed on anaesthetized Wistar rats the responses to 5-HT applications were studied in neurons of the lateral vestibular nucleus identified by the antidromic activation upon stimulation of the vestibulospinal tract. The magnitude (in percent) of the 5-HT induced excitatory responses decreased (hyperbolic correlation, r = 0.91) when the background mean firing rate was enhanced spontaneously or by long-lasting application of GLU. Even in high-discharging units, the response never changed its sign. The trend to a depression of the response to 5-HT in function of the background discharge was observed when either the enhancement of firing occurred spontaneously and it was induced by an application of GLU, no significant difference (F-test) being found between the two cases. It is concluded that serotoninergic afferents can exert a strong control upon the vestibular neurons when the background activity is depressed, and only a weak influence when the neuronal firing is enhanced by other excitatory afferents. It remains to verify whether the type of interference observed between GLU and 5-HT is specific or can be also detected between 5-HT and other excitatory neuromediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号