首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The combined effects of ammonium concentration and UV radiation on the red alga Porphyra columbina (Montagne) from the Patagonian coast (Chubut, Argentina) was determined using short‐term (less than a week) experimentation. Discs of P. columbina were incubated with three ammonium concentrations (0, 50, and 300 μM NH4Cl) in anilluminated chamber (PAR=300 μmol photons·m?2·s?1, UVA=15 W·m?2, UVB=0.7 W·m?2) at 15°C. Algae incubated at 300 μM ammonium showed a significant increase (P<0.05) in the concentration of mycosporine‐like amino acids (MAAs) compared with the initial value or with the other ammonium treatments. The increase of MAAs was, however, a function of the quality of irradiance received, with a higher increase in samples exposed to UVA compared with UVB (29% and 5% increase, respectively). However, UVB radiation was more effective in inducing MAA synthesis per unit energy received by the algae. Samples exposed to PAR only had an intermediate increase in MAA concentration of 16%. Chl a concentration decreased through the incubation with the greatest decrease at high ammonium concentration. Phycobiliprotein (BP) decreased through time with the smallest decrease occurring at high ammonium concentration. Photoinhibition (as a decrease of optimal quantum yield) was significantly greater under nitrogen‐deprived conditions than that under replete ammonium levels. Maximal gross photosynthesis (GPmax), as oxygen evolution, and maximal electron transport rate (ETRmax), as chl fluorescence, increased with the ammonium concentration. Positive relationships between maximal GP or ETR and pigment ratios (BP/chl a and MAAs/chl a) and negative relationships with chl a concentration were found.  相似文献   

2.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

3.
To better understand the interactions between PAR and UV‐B radiation in microalgae, the marine chlorophyte alga Dunaliella tertiolecta was subjected to a UV‐B flux of 4.1 W·m ? 2 (unweighted) with varying PAR fluxes. Rate constants for damage and repair processes during UV‐B exposure increased with PAR flux. However, recovery after UV‐B exposure increased with PAR up to 300 μmol quanta·m ? 2·s ? 1 1 Received 17 September 2002. Accepted 19 February 2003. , beyond which photoinhibition of PSII electron transport was found to decrease recovery rates. In the absence of PAR during the post UV‐B exposure period, no recovery was seen, indicating that perhaps the lack of light available for photosynthesis depresses repair either directly or indirectly by affecting ATP synthesis. Possible mechanisms for the observed interactions between PAR and UV‐B exposure are discussed.  相似文献   

4.
Zn availability in the ocean has been suggested to limit primary production by affecting CO2 acquisition processes for photosynthesis, therefore influencing the global carbon cycle. Also, UV radiation (UVR, 280–400 nm) is known to affect primary production in different ways. It remains to be ascertained whether Zn availability and UVR can act synergistically, antagonistically, or independently on oceanic primary production. We cultured the cosmopolitan diatom Skeletonema costatum (Grev.) Cleve under different radiation treatments with or without UVR (only photosynthetically active radiation), at 0, 3, and 10 pmol · L?1 Zn2+. Specific growth rate, photosynthetic carbon assimilation, external carbonic anhydrase (eCA) activity, and estimated cell abundance increased with increasing concentrations of Zn2+ from 0 to 3 and 10 pmol · L?1, irrespective of the radiation treatment. Higher eCA activity was observed in the cells grown at the high level of Zn2+ in the presence of UVR. An approximately linear relationship between μ and the daily dose of PAR was observed at 3 and 10 pmol · L?1 Zn2+ concentrations. However, the dependency of μ on the daily PAR dose disappeared when the cells were grown in the presence of UVR, which overall depressed both μ and photosynthetic carbon assimilation. The inhibitory effect of UVR was inversely related to Zn2+ concentrations. The ultraviolet‐B (UVB)‐related inhibition of growth and photosynthesis decreased with time, reflecting a faster acclimation of the cells to UVR at replete Zn2+ levels. Overall, growth in the presence of higher Zn2+ concentrations reduced the sensitivity to UV radiation in Skeletonema costatum.  相似文献   

5.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

6.
With a reduced stratospheric ozone concentration, the generation of UV-tolerant plants may be of particular importance. Among different crop plants there is large variation in sensitivity to UV-B radiation. This study was undertaken to investigate the possibilities of using somaclonal variation and selection in vitro for improving UV-B tolerance in sugar beet (Beta vulgaris L.). Sugar beet callus was exposed to UV radiation (280–320 nm, 0.863–5.28 kJ m-2 day-1, unweighted) and resultant shoots were selected from surviving cells. After establishment of the plants, they were grown under either visible radiation (114 μmol m-2 s-1 PAR) or with the addition of UV radiation (6.3 kJ m-2 day-1 biologically effective UV-B). Screening of regenerants in vivo for tolerance to UV radiation was undertaken 10 months after termination of the UV selection pressure. Screening was done visually and by using a number of physiological parameters, including chlorophyll fluorescence induction, ultraweak luminescence, pigment analysis and total content of UV-screening pigments. A clear difference between the unselected and the UV-selected somaclones was observed when visually studying the UV damage and other leaf injury. The observations were supported by the ultraweak luminescence measurements. Unselected plants showed significantly greater damage when subjected to subsequent UV radiation as compared to the selected plants. The clones subjected to UV selection pressure displayed a significantly higher concentration of UV-screening pigments under subsequent UV radiation. The unselected plants under subsequent UV treatment showed a lower carotenoid concentration when compared to selected plants. However, no significant difference between treatments was found for chlorophyll a/b, or F/Fmax, a measure of photosynthetic quantum yield.  相似文献   

7.
The effects of the triazine herbicide, simazine, on photosynthetic oxygen evolution and growth rate in photoacclimated populations of Anabaena circinalis Rabenhorst were investigated. Chemostat populations were acclimated to photon flux densities (PFDs) of 50, 130, and 230 μmol·m?2·s?1 of photosynthetic active radiation (PAR), Decreases in chlorophyll a (Chl a). c-phycocyanin (CPC), and total carotenoid (TCar) contents and CPC: Chl a and CPC: TCar ratios of populations coincided with increasing PFD, Polynomial regression models that characterize inhibition of photosynthesis for populations acclimated to 50 and 130 μmol photons·m?2·s?1 PAR were distinct from the model for populations acclimated to 230 μmol photons·m?2·s?1 PAR. Simazine concentrations that, depressed oxygen evolution 50% compared to controls decreased with increasing PFD. Increases and decreases in both biomass and growth rate coincided with increasing PFD and simazine concentration, respectively. Simazine concentrations that depressed growth rate 50% compared to controls increased with decreasing PFD. The differences in photosynthetic and growth inhibition among photoacclimated populations indicate that sensitivity to photosystem II inhibitors is affected by alterations in pigment contents.  相似文献   

8.
Aims: To assess the variability in UV‐B (280–320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV‐induced stress. Methods and Results: Bacterial suspensions were exposed to UV‐B radiation (3·3 W m?2). Effects on culturability and activity were assessed from colony counts and 3H‐leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV‐B‐induced inhibition of culturability (37·4–99·3%) and activity (36·0–98·0%) was observed. Incubation of UV‐B‐irradiated suspensions under reactivating regimes (UV‐A, 3·65 W m?2; photosynthetic active radiation, 40 W m?2; dark) also revealed diversity in the extent of recovery from UV‐B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Conclusions: Bacterioneuston isolates were less sensitive and recovered more rapidly from UV‐B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. Significance and Impact of the Study: UV exposure can affect the diversity and activity of microbial communities by selecting UV‐resistant strains and alter their metabolic activity towards protective strategies.  相似文献   

9.
Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll‐a fluorescence‐based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400–700 nm) and PAR+ ultraviolet (UV) radiation (280–700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P‐I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2‐fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.  相似文献   

10.
The morpho‐functional patterns of photosynthesis, measured as 14C‐fixation and chl fluorescence of PSII, also as affected by different doses of UV radiation in the laboratory were examined in the South Pacific kelp Lessonia nigrescens Bory of the coast of Valdivia, Chile (40°S). The results indicated the existence of longitudinal thallus profiles in physiological performance. In general, blades exhibited higher rates of carbon fixation and pigmentation as compared with stipes and holdfasts. Light‐independent 14C fixation (LICF) was high in meristematic zones of the blades (3.5 μmol 14C·g?1 fresh weight [FW]·h?1), representing 2%–16% (percentage ratio) of the photosynthetic 14C fixation (20 μmol 14C·g?1 FW·h?1). Exposures to UV radiation indicated that biologically effective UV‐B doses (BEDphotoinhibition300) of 200–400 kJ·m?2 (corresponding to current daily doses measured in Valdivia on cloudless summer days) inhibit photosynthetic 14C fixation of blades by 90%, while LICF was reduced by 70%. The percentage ratio of LICF to photosynthetic 14C fixation increased under UV exposure to 45%. Primary light reactions measured as maximum quantum yield (Fv/Fm) and electron transport rate (ETR) indicated a higher UV susceptibility of blades as compared with stipes and holdfasts: after a 48 h exposure to UV‐B, the decrease in the blades was close to 30%, while in the stipes and holdfasts it was <20%. The existence of translocation of labeled carbon along the blades suggests that growth at the meristem may be powered by nonphotosynthetic processes. A possible functional role of LIFC, such as during reduction of photosynthetic carbon fixation due to enhanced UV radiation, is discussed. These results in general support the idea that the UV‐related responses in Lessonia are integrated in the suite of morpho‐functional adaptations of the alga.  相似文献   

11.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

12.
The bloom‐forming cyanobacterium Microcystis aeruginosa Kütz 854 was cultured with 1.05 W·m?2 UV‐B for 3 h every day, and its growth, pigments, and photosynthesis were investigated. The specific growth rates represented by chl a concentration and OD750 were inhibited 8% and 9% by UV‐B exposure, respectively. Six days of UV‐B treatment significantly reduced cellular contents of phycocyanin and allophycocyanin by 32% and 62%, respectively, and markedly increased the carotenoid content by 27%, but had little effect on the chl a content. The initial values of optimal photosynthetic efficiency for UV‐B treated samples were, respectively, 52%, 87%, and 93% of controls on days 4, 7, and 10 of growth. The light‐saturated photosynthetic rates at day 6 were significantly lower than controls grown without UV‐B. The probability of electron transfer beyond QA decreased during UV‐B exposure, and this indicated that the acceptor side of PSII was one of main damage sites. The adaptation of M. aeruginosa 854 to UV‐B radiation could be observed from light‐saturated photosynthetic rates on day 13 and diurnal changes of chl fluorescence during the late growth phase. When both exposed to higher UV‐B, samples cultured under 1.05 W·m?2 UV‐B for 9 days recovered faster than controls. It is suggested that M. aeruginosa 854 had at least three adaptive strategies to cope with the enhanced UV‐B: increasing the synthesis of carotenoids to counteract reactive oxidants caused by UV‐B exposure, degrading phycocyanin and allophycocyanin to avoid further damage to DNA and reaction centers, and enhancing the repair of UV‐B induced damage to the photosynthetic apparatus.  相似文献   

13.
Abstract Stress physiology on the reproductive cells of Antarctic macroalgae remained unstudied. Ascoseira mirabilis is endemic to the Antarctic region, an isolated ecosystem exposed to extreme environmental conditions. Moreover, stratospheric ozone depletion leads to increasing ultraviolet radiation (280–400 nm) at the earth's surface, thus it is necessary to investigate the capacity of reproductive cells to cope with different UV irradiances. This study is aimed to investigate the impact of exposure to different spectral irradiance on the photosynthetic performance, DNA damage and gamete morphology of the A. mirabilis. Gametangia, gametes and zygotes of the upper sublittoral brown alga A. mirabilis were exposed to photosynthetically active radiation (PAR = P; 400–700 nm), P + UV‐A radiation (UV‐A, 320–400 nm) and P + UV‐A + UV‐B radiation (UV‐B, 280–320 nm). Rapid photosynthesis versus irradiance curves of freshly released propagules were measured. Photosynthetic efficiencies and DNA damage (in terms of cyclobutane pyrimidine dimers) were determined after 1, 2, 4 and 8 h exposure as well as after 2 days of recovery in dim white light. Saturation irradiance (Ik) in freshly released propagules was 52 μmol photons m−2 s−1. Exposure for 1 h under 22 μmol photons m−2 s−1 of PAR significantly reduced the optimum quantum yield (Fv/Fm), suggesting that propagules are low light adapted. Furthermore, UVR significantly contributed to the photoinhibition of photosynthesis. Increasing dose as a function of exposure time additionally exacerbated the effects of different light treatments. The amount of DNA damage increased with the UV‐B dose but an efficient repair mechanism was observed in gametes pre‐exposed to a dose lower than 5.8 × 103 J m−2 of UV‐B. The results of this study demonstrate the negative impact of UV‐B radiation. However, gametes of A. mirabilis are capable of photosynthetic recovery and DNA repair when the stress factor is removed. This capacity was observed to be dependent on the fitness of the parental sporophyte.  相似文献   

14.
It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade‐limited photosynthetic growth within depths of 20–30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20‐cm water column as a function of Chl‐a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1–2 mg Chl‐a · L?1, whereby a scalar ~5 μmol photons · m?2 · s?1 at 20‐cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl‐a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non‐photochemical quenching capacities, which could negatively impact crop yield.  相似文献   

15.
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of ~30°C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280–400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400–700 nm] and PAB [PAR + UV‐A + UV‐B: 280–700]), three temperatures (15, 22, and 30°C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] · L?1). UVR caused a breakage of the spiral structure at 15°C and 22°C, but not at 30°C. High PAR levels also induced a significant breakage at 15°C and 22°C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15°C but was relatively high at 30°C even under the treatment with UVR in 8 h. At 30°C, UVR led to 93%–97% less DNA damage when compared with 15°C after 8 h of exposure. UV‐absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature‐dependent effects of UVR on this organism are discussed in this paper.  相似文献   

16.
We examined how UV radiation and phosphorus (P) affect the taxonomic composition, abundance, and biomass of phytoplankton in an oligotrophic boreal lake. We exposed phytoplankton to three different solar radiation regimes (PAR + UV‐A radiation [UVAR]+ UV‐B radiation [UVBR], PAR + UVAR, and PAR only) and to five levels of P. The biomass of small chrysophytes was reduced by 350% after exposure to PAR + UVAR + UVBR compared with PAR only. No other taxa were found to be negatively affected by exposure to UVBR. Several taxa (e.g. Chry‐ sochromulina laurentiana Kling) were sensitive to UVAR, whereas others (e.g. Tabellaria flocculosa (Roth) Kutzing) were not affected by UV radiation exposure. Principal components analysis ordination separated phytoplankton that were negatively affected by UV radiation and/or positively affected by P treatments (e.g. small chrysophytes, Cryptomonas rostratiformis, T. flocculosa) from those that generally were unaffected by either treatment (e.g. desmids, some Cyanobacteria). Richness, Shannon‐Weaver diversity, and evenness were significantly higher in phytoplankton communities shielded from UVAR and UVBR. The relationship between diversity and richness was positive in all phytoplankton samples except in those exposed to UVBR. Thus, UVBR‐exposed phytoplankton communities were dominated by a few species even though the number of taxa remained relatively unchanged. Consequently, alterations in the UV environments of lakes resulting from climate warming (e.g. drought) and land‐use change (e.g. increased P export) will likely promote shifts in the community composition of lake phytoplankton.  相似文献   

17.
The filamentous cyanobacterium Fischerella muscicola TISTR8215 was tested for the presence of ultraviolet (UV)‐absorbing mycosporine‐like amino acids (MAAs) and their induction by UV radiation. Reverse‐phase high performance liquid chromatographic coupled with photodiode‐array detection studies revealed the presence of a MAA having an absorption maximum at 332 nm and a retention time of around 16.1 min. Based on absorption maximum, the compound was designated as M‐332. This is the first report for the occurrence of a MAA and its inducibility as influenced by UV radiation in Fischerella strains studied so far. Photosynthetically active radiation (PAR) had no significant impact on MAA induction. PAR + UV‐A radiation significantly induced the synthesis of M‐332; however, PAR + UV‐A + UV‐B radiation conferred highest impact on MAA synthesis. The cultures exposed to alternate light and dark conditions showed the induction of M‐332 synthesis mostly during the light period in contrast to the decreased levels of M‐322 during the dark period suggesting a circadian induction of its synthesis. Overall results indicate that F. muscicola may protect itself from deleterious short wavelength UV radiation by synthesizing the photoprotective compounds particularly during summer time in its natural brightly‐lit habitats.  相似文献   

18.
Hatching success was examined under exposure to solar ultraviolet radiation (UVR) using filters to give three different light conditions [C1: UV‐B, UV‐A and photosynthetically active radiation (PAR), C2: UV‐A and PAR, C3: PAR] in red Pagrus major and black Acanthopagrus schlegeli sea bream. Hatching rate of both species was reduced by an exposure over a 2 day period to UVR and was not significantly different between two species under the three light conditions.  相似文献   

19.
The mat-forming cyanobacterium Phormidium murrayi West and West isolated from a meltwater pond on the McMurdo Ice Shelf was grown in unialgal batch cultures to evaluate the temperature dependence of ultraviolet radiation (UVR) effects on pigment composition, growth rate, and photosynthetic characteristics. Chlorophyll a concentrations per unit biomass were generally reduced in cells grown under UVR (low UV-A plus UV-B). In vivo absorbance spectra showed that the carotenoid/chlorophyll a ratio increased as a function of photosynthetically available radiation (PAR) and UVR exposure and varied inversely with temperature. Ultraviolet inhibition of growth (percentage reduction of μmax at each temperature) increased linearly with decreasing temperature, consistent with the hypothesis that net inhibition represents the balance between temperature-independent photochemical damage and temperature-dependent biosynthetic repair. There was no significant effect of UVR on photosynthesis over the first hour of exposure, but significant UV inhibition was observed after 5 days. Unlike growth, however, there was no apparent effect of temperature on the magnitude of UV inhibition of photosynthesis. These results imply that assays of UVR effects on photosynthesis are not an accurate guide to growth responses and that low ambient temperatures can have a major influence on the UV sensitivity of polar organisms. In a set of assays at 20° C (preacclimation under 300 μmol photons·m?2·s?1 and 20° C), growth was strongly depressed by UVR over the first day of exposure but then gradually increased over the subsequent 4 days, approaching the growth rates in the minus UVR control. This evidence of acquired tolerance indicates that the damaging effects of UVR will be most severe in environments where there is a mismatch between the timescale of change in exposure and the timescale of UV acclimation.  相似文献   

20.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号