首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
害虫及其共生真菌是针叶树生长、繁衍的一个灾害性的问题,在漫长的进化过程中,很多针叶树种发展了高度发达的固有和诱导树脂防御系统来抵御侵害。树脂的抗害过程,也即树脂的分泌过程,树脂是由单萜、蓓半萜和二萜组成的复杂混合物。文章介绍树脂的组成及其抗害功能,分析外界环境条件对树脂防御功能的影响,阐述诱导树脂生物合成的途径、路线及其一般规律和树脂萜的基因鉴定,讨论开发、利用树脂优良特性保护针叶树的前景。  相似文献   

2.
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.  相似文献   

3.
4.
Numerous terpenoid compounds are present in copious amounts in the oleoresin produced by conifers, especially following exposure to insect or fungal pests. CDNA clones for many terpene synthases responsible for the biosynthesis of these defense compounds have been recovered from several conifer species. Here, the use of three terpene synthase sequences as heterologous probes for the discovery of related terpene synthase genes in Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), is reported. Four full-length terpene synthase cDNAs were recovered from a methyl jasmonate-induced Douglas-fir bark and shoot cDNA library. These clones encode two multi-product monoterpene synthases [a (-)-alpha-pinene/(-)-camphene synthase and a terpinolene synthase] and two single-product sesquiterpene synthases [an (E)-beta-farnesene synthase and a (E)-gamma-bisabolene synthase].  相似文献   

5.
The complex mixture of monoterpenes, sesquiterpenes, and diterpenes that comprises oleoresin provides the primary defense of conifers against bark beetles and their associated fungal pathogens. Monoterpene synthases produce the turpentine fraction of oleoresin, which allows mobilization of the diterpene resin acid component (rosin) and is also toxic toward invading insects; this is particularly the case for alpha-pinene, a prominent bicyclic monoterpene of pine turpentine. The stereochemistry of alpha-pinene is a critical determinant of host defense capability and has implications for host selection, insect pheromone biosynthesis, and tritrophic-level interactions. Pines produce both enantiomers of alpha-pinene, which appear to arise through antipodal reaction mechanisms by distinct enzymes. Using a cDNA library constructed with mRNA from flushing needles of loblolly pine (Pinus taeda), we employed a homology-based cloning strategy to isolate, and confirm by functional expression, the genes encoding (+)-(3R:5R)-alpha-pinene synthase, (-)-(3S:5S)-alpha-pinene synthase, and several other terpene synthases. The pinene synthases, which produce mirror-image products, share only 66% amino acid identity (72% similarity) but are similar in general properties to other monoterpene synthases of gymnosperms. The stereochemical control of monoterpene cyclization reactions, the evolution of "antipodal" enzymes, and the implications of turpentine composition in ecological interactions are discussed.  相似文献   

6.
Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.  相似文献   

7.
Practices that enhance abundance and diversity of generalist predators are often employed with the objective of improving biological control of insect pests. Ground beetles and other predators can prey on blueberry maggot, an important pest of blueberries, when mature larvae pupate in the ground. We conducted mesocosm and field experiments to determine if Pterostichus melanarius, a common predatory ground beetle, lowers maggot numbers in compost mulch or when predator and alternative prey abundances are manipulated. At background (field) densities of alternative prey, increasing densities of P. melanarius did not significantly reduce pest numbers in mesocosms containing compost or soil. When alternative prey were removed from compost, beetles reduced pest numbers by up to 35%. In field experiments, maggot numbers were higher when beetles and other predators were excluded from soil plots, but beetle exclusion had no effect in compost plots where both predator and alternative prey numbers were high. Our results indicate that there can be some reduction of blueberry maggot by P. melanarius and other potential predators when there are few alternative prey. However, despite attracting large numbers of predators compost mulch did not lead to a significant reduction in blueberry maggot; in fact, the high abundance of alternative food associated with compost appeared to interfere with beetle predation on blueberry maggot.  相似文献   

8.
Defense-related terpenoid biosynthesis in conifers is a dynamic process closely associated with specialized anatomical structures that allows conifers to cope with attack from many potential pests and pathogens. The constitutive and inducible terpenoid defense of conifers involves several hundred different monoterpenes, sesquiterpenes and diterpenes. Changing arrays of these many compounds are formed from the general isoprenoid pathway by activities of large gene families for two classes of enzymes, the ter...  相似文献   

9.
Insect pests and phytophagous mites cause a considerable loss to tropical root crops in the field. Major pests include the sweet potato weevil Cylas puncticollis, cassava mealybug Phenacoccus manihoti, cassava green spider mite Mononychellus tanajoa, yam beetle Heteroligus meles, and taro hornworm Hippotion celerio. Field and laboratory evaluation experiments indicate that entomopathogenic microorganisms may be adequately used in the management of insect and mite pests in root crops. The highest promise probably lies with fungal pathogens (Beauvaria bassiana, Hirsutella thompsonii, Metarhizium anisopliae, Nomuraea rileyi, Entomophthora thaxteriana, and E. parvispora), but bacterial (Bacillus thuringiensis), microsporidian (Nosema locustae) nematode (Steinernema feltiae) and even viral (Baculoviruses) pathogens may be exploited in an integrated pest management programme of tropical root crop pests.  相似文献   

10.
萧氏松茎象危害与松树松脂量关系研究初报   总被引:6,自引:1,他引:5  
萧氏松茎象HylobitelusxiaoiZhang是近年来暴发性松树害虫 ,主要危害 3种松树 :湿地松 (PinuselliottiiEngelm)、火炬松 (P .taeda)、马尾松 (P .massoniaanaLamb) ,其中以湿地松受害最为严重。为明确萧氏松茎象的危害与松脂流量的关系 ,作者对萧氏松茎象危害前后 3种松树 (湿地松、马尾松、火炬松 )松脂流量变化进行了研究。结果显示 ,在松树受害植株和未受害植株间松脂总流量间存在一定差异 ,其中以马尾松松脂流量变化最大 ,对受害株和未受害株松脂流量t-测验 ,差异达到显著水平 ;而湿地松和火炬松松脂总流量在受害植株和未受害植株间没有显著差异。对上述 3种松树松脂流量随时序动态变化的分析显示 ,松脂流量在 1年中以 5月到 6月之间为松脂流量高峰期 ,此后逐渐下降 ,到 3月中旬以后松脂流量又开始上升。就松脂流量时序动态而言 ,萧氏松茎象为害对马尾松松脂流量影响最大 ,对其它2个松树影响不明显。另外 ,不同松树树种在松脂流量及其时序动态上也存在一定差异 ,其中以马尾松脂流量较高。  相似文献   

11.
Bark beetles and associated fungi are among the greatest natural threats to conifers worldwide. Conifers have potent defenses, but resistance to beetles and fungal pathogens may be reduced if tree stored resources are consumed by fungi rather than used for tree defense. Here, we assessed the relationship between tree stored resources and resistance to Ceratocystis polonica, a phytopathogenic fungus vectored by the spruce bark beetle Ips typographus. We measured phloem and sapwood nitrogen, non-structural carbohydrates (NSC), and lipids before and after trees were attacked by I. typographus (vectoring C. polonica) or artificially inoculated with C. polonica alone. Tree resistance was assessed by measuring phloem lesions and the proportion of necrotic phloem around the tree''s circumference following attack or inoculation. While initial resource concentrations were unrelated to tree resistance to C. polonica, over time, phloem NSC and sapwood lipids declined in the trees inoculated with C. polonica. Greater resource declines correlated with less resistant trees (trees with larger lesions or more necrotic phloem), suggesting that resource depletion may be caused by fungal consumption rather than tree resistance. Ips typographus may then benefit indirectly from reduced tree defenses caused by fungal resource uptake. Our research on tree stored resources represents a novel way of understanding bark beetle-fungal-conifer interactions.  相似文献   

12.
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.  相似文献   

13.
Journal of Plant Biochemistry and Biotechnology - Plant protease inhibitors are defense molecules against pests, predators and pathogens. We purified and characterized a new 14 kDa...  相似文献   

14.
Intra‐guild predation (IGP) – where a top predator (IGPred) consumes both a basal resource and a competitor for that resource (IGPrey) – has become a fundamental part of understanding species interactions and community dynamics. IGP communities composed of intraguild predators and prey have been well studied; however, we know less about IGP communities composed of predators, pathogens, and resources. Resource quality plays an important role in community dynamics and may influence IGP dynamics as well. We conducted a meta‐analysis on predator–pathogen–resource communities to determine whether resource quality mediated by the pathogen affected predator life‐history traits and if these effects met the theoretical constraints of IGP communities. To do this, we summarized results from studies that investigated the use of predators and pathogens to control insect pests. In these systems, the predators are the IGPred and pathogens are the IGPrey. We found that consumer longevity, fecundity, and survival decreased by 26%, 31% and 13% respectively, when predators consumed pathogen‐infected prey, making the infected prey a low quality resource. Predators also significantly preferred healthy prey over infected prey. When we divided consumers by enemy type, strict predators (e.g. wolf spiders) had no preference while parasitoids preferred healthy prey. Our results suggest that communities containing parasitoids and pathogens may rarely exhibit intraguild predation; whereas, communities composed of strict predators and pathogens are more likely dominated by IGP dynamics. In these latter communities, the consumption of low and high quality resources suggests that IGP communities composed of strict predators, pathogens and prey should naturally persist, supporting IGP theory. Synthesis We investigated how consuming pathogen‐infected prey influence important life‐history parameters of insect predators. Pathogens are used in a variety of biocontrol programs, especially to control crop pests. We found that true predators (i.e. wolf spiders) have no preference for healthy or infected prey and have reduced fecundity, survival and longevity consuming infected prey. However, parasitoids avoided infected prey when possible. In biocontrol programs with multiple control agents, parasitoids and pathogens would do a better job controlling pests as predators would reduce the amount of pathogen available and have reduced fitness from consuming infected prey. However, theory suggests that true predators, prey and pathogens may coexist long term.  相似文献   

15.
《Biological Control》2010,52(3):499-506
Natural enemies that control pests usually allow farmers to avoid, or reduce, the use of pesticides. However, modern farming practices, that maximize yields, are resulting in loss of biodiversity, particularly prey diversity. Does this matter? Pests continue to thrive, and without alternative prey the predators should, perforce, concentrate their attentions upon the pests.We showed that a diverse diet significantly enhances predator fecundity and survival. Experiments were conducted using common generalist predators found in arable fields in Europe, the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae) and the linyphiid spider Erigone atra (Araneae: Linyphiidae). We tested the hypothesis that mixed species diets were optimal, compared with restricted diets, with respect to parameters such as predator weights, egg weights, numbers of eggs laid, egg development times, egg hatching rates and predator survival. In carabids, an exclusive earthworm diet was as good as mixed diets containing earthworms for egg production and hatching, but less good than such mixed diets for increase in beetle mass and sustained egg laying. For spiders, aphids alone (Sitobion avenae) or with the Collembola Folsomia candida, drastically reduced survival. Aphids plus the Collembola Isotoma anglicana improved survival but only aphids with a mixed Collembola diet maximized numbers of hatching eggs.Predators offered only pests (slugs or aphids) had lowest growth rates and fecundity. We therefore demonstrated that conservation of a diversity of prey species within farmland, allowing predators to exploit a diverse diet, is essential if predators are to continue to thrive in crops and regulate agricultural pests.  相似文献   

16.

Background

Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program.

Methodology

The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010.

Principal Finding

Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C4 resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C3-based resource in June, July and August, while approximately 80% of the diet originated from a C4-based resource in September.

Conclusion/Significance

Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.  相似文献   

17.
The major fungal phyla have independently and repeatedly evolved the ability to overcome the insect defense system, which is usually highly effective against fungal attack. During the genomic era of the last decade, extensive progress has been made in understanding the mechanisms of interactions between insects and their fungal pathogens, particularly Metarhizium spp., the focus of this article. New models of pathogenesis have been designed, new biological phenomena have been discovered, and a plethora of new molecules and functions have been determined that are crucial for successful establishment of fungal disease by permitting: attachment to the insect surface; germination and formation of infection structures; penetration of the host; colonization of host tissue; and sporulation on cadavers. Genomic technologies in particular are producing breakthroughs in some of the more intractable aspects of this field, e.g. evolution of host specificity.  相似文献   

18.
1 Natural and recurring disturbances caused by fire, native forest insects and pathogens have interacted for millennia to create and maintain forests dominated by seral or pioneering species of conifers in the interior regions of the western United States and Canada. 2 Changes in fire suppression and other factors in the last century have altered the species composition and increased the density of trees in many western forests, leading to concomitant changes in how these three disturbance agents interact. 3 Two‐ and three‐way interactions are reviewed that involve fire, insects and pathogens in these forests, including fire‐induced pathogen infection and insect attack, the effects of tree mortality from insects and diseases on fuel accumulation, and efforts to model these interactions. 4 The emerging concern is highlighted regarding how the amount and distribution of bark beetle‐caused tree mortality will be affected by large‐scale restoration of these fire‐adapted forest ecosystems via prescribed fire. 5 The effects of fire on soil insects and pathogens, and on biodiversity of ground‐dwelling arthropods, are examined. 6 The effects of fire suppression on forest susceptibility to insects and pathogens, are discussed, as is the use of prescribed fire to control forest pests.  相似文献   

19.
Chemical defense is one of the most important traits, which endow insects the ability to conquer a most diverse set of ecological environments. Chemical secretions are used for defense against anything from vertebrate or invertebrate predators to prokaryotic or eukaryotic parasites or food competitors. Tenebrionid beetles are especially prolific in this category, producing several varieties of substituted benzoquinone compounds. In order to get a better understanding of the genetic and molecular basis of defensive secretions, we performed RNA sequencing in a newly emerging insect model, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). To detect genes that are highly and specifically expressed in the odoriferous gland tissues that secret defensive chemical compounds, we compared them to a control tissue, the anterior abdomen. 511 genes were identified in different subtraction groups. Of these, 77 genes were functionally analyzed by RNA interference (RNAi) to recognize induced gland alterations morphologically or changes in gland volatiles by gas chromatography-mass spectrometry. 29 genes (38%) presented strong visible phenotypes, while 67 genes (87%) showed alterations of at least one gland content. Three of these genes showing quinone-less (ql) phenotypes – Tcas-ql VTGl; Tcas-ql ARSB; Tcas-ql MRP – were isolated, molecularly characterized, their expression identified in both types of the secretory glandular cells, and their function determined by quantification of all main components after RNAi. In addition, microbe inhibition assays revealed that a quinone-free status is unable to impede bacterial or fungal growth. Phylogenetic analyses of these three genes indicate that they have evolved independently and specifically for chemical defense in beetles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号