首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis of this study was that colonizers in decaying leaf litter prefer native species (Erythrina verna) to exotic ones (Eucalyptus camaldulensis and Protium heptaphyllum). Therefore, native species are expected to show higher breakdown rates, increased biomass, richness and density of invertebrate species, and increased biomass of decomposer fungi. Breakdown of leaf litter from these three species was assessed in an Atlantic Rain Forest stream. Four samples were collected during a period of 90 days and washed on a sieve to separate the invertebrates. Then, a series of leaf disks were cut to determine ash‐free dry mass and fungal biomass, and the remaining material was oven‐dried to determine the dry weight. Eucalyptus camaldulensis and E. verna showed higher breakdown rates than P. heptaphyllum, due to differences in leaf physical and chemical characteristics. The harder detritus (P. heptaphyllum) broke down more slowly than detritus with high concentrations of labile compounds (E. camaldulensis). The density of the invertebrates associated with detritus increased with time. There were no differences in density, taxonomic richness or biomass of invertebrates among the leaf types, which indicated that the invertebrates did not distinguish between exotic and native detritus. Fungal colonization varied among samples; E. camaldulensis showed the lowest ergosterol concentrations, mainly due to a high concentration of total phenolics. The detritus with the highest hardness value was colonized most slowly by fungi. These results showed that leaf breakdown in Atlantic Rain Forest streams could be affected either by changes in riparian vegetation, or by becoming more savanna‐like process due to climate change.  相似文献   

2.
Biomass and breakdown of tree roots within streambed sediments were compared with leaf and wood detritus in three Coastal Plain headwater intermittent streams. Three separate riparian forest treatments were applied: thinned, clearcut, and reference. Biomass of roots (live and dead) and leaf/wood was significantly higher in stream banks than in the channel and declined with depth strata (0–10 > 10–20 > 20–30 cm). Riparian roots (live and dead combined) contributed on average 24 and 42% of coarse particulate organic matter (CPOM) biomass within the top 30 cm of channel and streambank sediments, respectively. Estimated mean surface area of live riparian roots within sediments was 1084 cm2 m−3. Streambed temperatures showed greater fluctuation at the clearcut site compared to thinned and reference treatments. However, breakdown rates among buried substrate types or riparian treatments did not differ after 1 y. Slow decay rates were associated initially with anaerobic conditions within sandy sediments and later with dry sediment conditions. Riparian roots represent a direct conduit between streamside vegetation and the hyporheic zone. In addition to contributing to organic matter storage, the abundance of riparian roots within streambed sediments suggests that roots play an important role in biogeochemical cycling within intermittent headwater streams of the Coastal Plain.  相似文献   

3.
1. The organic matter dynamics of streams dominated by herbs and grass on their banks are poorly understood, despite the fact that such streams are common worldwide. Further, herbs and grasses can provide large quantities of detritus to stream food webs, and particularly small streams can be heavily shaded by overhanging vegetation, perhaps limiting in‐stream primary production. 2. We quantified the standing crop of edge vegetation and associated macroinvertebrate communities along three headwater streams with herbaceous and grass riparian vegetation on agricultural land in the Piedmont of Maryland, U.S.A., measured the decomposition of four common species of herbs and grasses using experimental leaf packs, and removed edge vegetation experimentally to determine the effect of shading on benthic algal production. 3. Large standing crops of plant material (average range: 68–276 g ash‐free dry mass per m−2), composed largely of monocotyledons, were found at all three study streams. These values are similar to those for coarse particulate organic matter in deciduous forested streams in the eastern U.S.A. In addition, diverse assemblages of shredding macroinvertebrates were observed at all three study sites. 4. Decomposition of the herbs was faster than that of the grasses, and both decomposed faster than most deciduous tree leaf litter. The decomposition rates of the herbs and grasses were significantly related to leaf quality as measured by leaf nitrogen content. Macroinvertebrate shredders colonized all experimental leaf packs, and the colonization of the herbs was faster than that of the grasses. 5. The accrual of chlorophyll‐a after the removal of shading vegetation was faster than that measured prior to removal as well as that in an unmanipulated control reach. 6. Given that the standing crop of organic matter in streams with herbs and grass along their banks was similar to that in forested streams, that the organic matter was rich in nitrogen and used by detritivores, and riparian shading limited algal growth, we suggest that herbaceous and grass plant material may be an important allochthonous food resource in such systems.  相似文献   

4.
We examined red maple (Acer rubrum L.) leaf litter breakdown in streams and riparian zones at two sites in the southern Appalachian Mountains to understand how differences in abiotic and biotic factors influence leaf breakdown rates. Litterbags were placed in three riparian habitats differing in litter layer moisture: stream > bank > upland. Invertebrates colonizing litterbags at one site were also examined to determine how variations in community and functional structure affect breakdown rates. Leaves broke down fastest in streams and slowest in upland habitats, whereas bank habitats were intermediate and characterized by high variability. Faster leaf breakdown rates in streams appeared to be a function of greater moisture availability, a more stable thermal regime, and a higher biomass of leaf-shredding invertebrates, especially the stonefly Tallaperla. In addition, patterns of leaf breakdown and invertebrate community structure provided evidence for a stronger than expected ecological connection between the stream and the bank. Overall, detritus processing within this narrow riparian ecosystem varied considerably depending on the availability of moisture. Results from this study show that stream channel–floodplain interactions in riparian ecosystems of steep forested mountains are analogous to ones in larger downstream or low-gradient systems. Riparian zones throughout a river network display a remarkable heterogeneity in their ability to process organic matter, which is ultimately driven by changes in hydrological conditions. Received 6 March 2001; accepted 3 July 2001.  相似文献   

5.
1. Detrital inputs from riparian forests can provide the main source of energy to aquatic consumers in stream communities. However, the supply of coarse organic detritus to stream communities is difficult to predict. Patchy riparian inputs and connectivity between reaches have complicated studies and disrupted patterns of the distribution of suspended coarse particulate organic matter within streams and rivers.
2. In this study we emphasize the importance of spatial and temporal scales in determining potential distribution of instream leaf litter. Although large pulses of detritus are transported by streams during storm flows, the main supply of benthic leaf litter used by shredders and of suspended particulate organic matter used by filter feeders is transported during prolonged periods of baseflow. The local, fine-scale distribution of this organic matter is determined by the location and continuity of leaf litter sources (riparian vegetation) and specific features of channel roughness (such as woody debris, roots and rocks).
3. Viewing riparian vegetation at several scales results in variable conclusions regarding the amount of potential source area of leaf detritus. The percentage of suspended whole leaves at sites in the Little Washita River, Oklahoma, U.S.A. was best explained by the percentage of riparian forest cover in 500 m and 1000 m reaches upstream of the sites, as viewed by remote sensing imagery. The amount of leaf fragments was best explained by distance downstream along the longitudinal gradient. Ash-free dry mass of suspended coarse particulate matter did not correlate with any measures of riparian cover.
4. Our results suggest that leaves originate over longer reach lengths than those generally considered as source areas. Scale is an important consideration in studies of riparian patterns and related instream processes because of the need to integrate point dynamics as well as upstream influences.  相似文献   

6.
1. Detrital inputs from riparian forests can provide the main source of energy to aquatic consumers in stream communities. However, the supply of coarse organic detritus to stream communities is difficult to predict. Patchy riparian inputs and connectivity between reaches have complicated studies and disrupted patterns of the distribution of suspended coarse particulate organic matter within streams and rivers.
2. In this study we emphasize the importance of spatial and temporal scales in determining potential distribution of instream leaf litter. Although large pulses of detritus are transported by streams during storm flows, the main supply of benthic leaf litter used by shredders and of suspended particulate organic matter used by filter feeders is transported during prolonged periods of baseflow. The local, fine-scale distribution of this organic matter is determined by the location and continuity of leaf litter sources (riparian vegetation) and specific features of channel roughness (such as woody debris, roots and rocks).
3. Viewing riparian vegetation at several scales results in variable conclusions regarding the amount of potential source area of leaf detritus. The percentage of suspended whole leaves at sites in the Little Washita River, Oklahoma, U.S.A. was best explained by the percentage of riparian forest cover in 500 m and 1000 m reaches upstream of the sites, as viewed by remote sensing imagery. The amount of leaf fragments was best explained by distance downstream along the longitudinal gradient. Ash-free dry mass of suspended coarse particulate matter did not correlate with any measures of riparian cover.
4. Our results suggest that leaves originate over longer reach lengths than those generally considered as source areas. Scale is an important consideration in studies of riparian patterns and related instream processes because of the need to integrate point dynamics as well as upstream influences.  相似文献   

7.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   

8.
Tobacco (Nicotiana tabacum L. cv. Samsun) plantlets were cultured in vitro on Murashige-Skoog medium photoautotrophically (without sucrose) or photomixotrophically (with 3 % sucrose) under two irradiances [70 or 230 µmol m–2 s–1]. Significant differences in stomatal density and sizes in leaves of different insertion levels (3rd, 5th and 7th leaves from bottom) in photomixotrophic plantlets but not in photoautotrophic ones were found after 35 d of culture. Stomatal density was higher in upper leaves and on abaxial leaf side. Higher irradiance enhanced stomatal density in photoautotrophic plantlets. Stomatal sizes decreased with leaf insertion level but no significant differences between leaf sides were found. Abaxial stomata were more circular than the adaxial ones. In photomixotrophic plantlets stomata tended to be more elongated in the 3rd and the 5th leaves, whereas stomatal elongation in photoautotrophic plantlets was similar in all leaves.  相似文献   

9.
1. Evapotranspiration (ET) is a major source of water depletion from riverine systems in arid and semiarid climates. Water budgets have produced estimates of total depletions from riparian vegetation ET for a 320‐km reach of the Middle Rio Grande, New Mexico, U.S.A., that have ranged from 20 to 50% of total depletions from the river. 2. Tower‐based micrometeorological measurements of riparian zone ET throughout the growing season using three‐dimensional eddy covariance provided high quality estimates of ET at the stand scale. 3. A dense stand of salt cedar (111–122 cm year–1) and a mature cottonwood (Populus deltoides ssp. wislizenia Eckenwelder) stand with an extensive understory of salt cedar (Tamaria ramosissima Ledeb) and Russian olive (Eleagnus angustifolia L.) (123 cm year–1) had the highest rates of annual ET. A mature cottonwood stand with a closed canopy had intermediate rates of ET (98 cm year–1). A less dense salt cedar stand had the lowest rates of ET (74–76 cm year–1). 4. Summer leaf area index (LAI) measurements within the four stands were positively correlated with daily ET rates. LAI measurements throughout the growing season coupled to riparian vegetation classification is a promising method for improving riverine corridor estimates of total annual riparian zone ET along a reach of river. 5. Combining recent estimates of the extent of riparian vegetation along the 320 km length of the Middle Rio Grande, from Landsat 7 imagery with annual growing season measurements of ET at the four riparian stands yields a first‐order riverine corridor estimate of total riparian zone ET of 150–250 × 106 m3 year–1. This is approximately 20–33% of total estimated depletions along this reach of river.  相似文献   

10.
The quality and quantity of allochthonous inputs and of benthic organic matter were investigated in a second-order, perennial mountain stream in the south-west Cape, South Africa, between April 1983 and January 1986. Although the endemic, riparian vegetation is sclerophyllous, low and evergreen, inputs of allochthonous detritus to the stream (434 to 500 g m–2y–1) were similar to those recorded for riparian communities worldwide, as were calorific values of these inputs (9548 to 10 032 KJ m–2y–1). Leaf fall of the riparian vegetation is seasonal, occurring in spring (November) as discharge decreases, resulting in retention of benthic organic matter (BOM) on the stream bed during summer and early autumn (maximum 224 g m–2). Early winter rains (May) scoured the stream almost clean of benthic detritus (winter minimum 8 g m–2). Therefore, BOM was predictably plentiful for about half of each year and predictably scarce for the other half. Coarse BOM (CBOM) and fine BOM (FBOM) constituted 46–64% of BOM standing stock, ultra-fine BOM (UBOM) 16–33% and leaf packs 13–24%. The mean annual calorific value of total BOM standing stock was 1709 KJ m–2. Both standing stocks and total calorific values of BOM were lower than those reported for streams in other biogeographical regions. Values of C:N ratios decreased with decrease in BOM particle size (CBOM 27–100; FBOM 25–27; UBOM 13–19) with no seasonal trends. The stream is erosive with a poor ability to retain organic detritus. Its character appears to be dictated by abiotic factors, the most important of which is winter spates.  相似文献   

11.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

12.

Background  

The silkworm Bombyx mori is a lepidopteran insect with four developmental stages: egg, larva (caterpillar), pupa, and adult. The hemolymph of the silkworm is in an open system that circulates among all organs, and functions in nutrient and hormone transport, injury, and immunity. To understand the intricate developmental mechanisms of metamorphosis, silkworm hemolymph from different developmental stages, including the 3rd day of fifth instar, the 6th day of fifth instar, the 3rd day of pupation, the 8th day of pupal stage and the first day of the moth stage, was investigated by two-dimensional electrophoresis and mass spectrometry.  相似文献   

13.
An exclosure experiment was carried out in the reed-dominated littoral zone of a volcanic lake (Lake Vico, central Italy) to test whether the impact of predatory fish on benthic invertebrates cascades on fungal colonisation and breakdown of leaf detritus. The abundance, biomass, and Shannon diversity index of the invertebrate assemblage colonising Phragmites australis leaf packs placed inside: (1) full-exclosure cages, (2) cages allowing access only to small-sized fish predators, and (3) cageless controls, were monitored over a 45-day period together with the mass loss and associated fungal biomass of leaf packs. The species composition of the fungal assemblage was further assessed at the end of the manipulation. In general, invertebrate predators did not show any significant response to fish exclusion, either on a trophic guild or on a single taxon level. In contrast, the exclusion of large predatory fish induced a diverse spectrum of changes in the abundance and population size-structure of dominant detritivore taxa, ultimately increasing the biomass and Shannon diversity index of the whole detritivorous guild. These changes corresponded with significant variations in leaf detritus decay rates as well as in the biomass and assemblage structure of associated fungal colonisers. Our experimental findings provide evidence that in Lake Vico effects of fish predators on invertebrate detritivores influence the fungal conditioning and breakdown of the detrital substrate. We conclude that in lacustrine littoral zones predator-driven constraints may structure lower trophic levels of detritus-based food webs and affect the decomposition of leaf detritus originated from the riparian vegetation.  相似文献   

14.
A. Schopf 《BioControl》1991,36(4):593-604
The endoparasitic development ofG. liparidis was examined in 3 different host stages of gypsy moth larvae. Hatching ofG. liparidis-larvae occurred 3 to 5 days after oviposition in hosts parasitized during their premoulting period, and after 5 to 7 days in those parasitized in the 3rd midinstar state. The parasites generally moulted to the 2nd larval instar between the 11th and 13th day in the first group, and between the 13th and 15th day in the latter, when they had reached a volume of 0.04–0.05 mm3. The positive correlation between host ecdysis and the ecdysis of 1st stadium larvae to L2 suggested that host moulting influenced the development of the parasitoid larvae. Emergence from the host larvae occurred at 20°C after 27 days on average, and coincided with the parasites moulting to the 3rd instar. Five to 7 days after spinning their cocoons near the developmentally arrested host larva, the male, and 1 to 2 days later the female wasps eclosed. Due to the variation in the number of parasites per host, no difference was observed between the hosts parasitized at various stages; however, a tendency for later parasitized hosts to contain more parasite larvae was evident. The nutritional conditions of the moth parental generation influenced both host and parasite development. On the other hand no influence of host age was observed on emergence dates of larvae and wasps.   相似文献   

15.
Leaf decomposition, an important component of the organic matter dynamics in streams, has been widely examined in temperate regions but much less documented in tropical regions. We report here the first study of leaf decomposition in a Sri Lankan stream. The litterbag technique was used. Coarse (8 mm) and fine (100 µm) litterbags, that included or excluded macroinvertebrates respectively, were used to enclose leaves of three dominant riparian tree species: native Ochlandra stridula (bamboo), and the introduced Alstonia macrophylla and Hevea brasiliensis (rubber). A fourth set of litterbags contained a mixture of these three species. Leaf colonization by macroinvertebrates was highest in the early stages of the decomposition process on Hevea leaves but invertebrate densities declined later. The opposite colonization effect was observed on the native Ochlandra leaves: slow colonization with continuing low densities from the beginning to the end of the process. Decomposition of all three species was significantly faster in the coarse than in the fine mesh bags. Alstonia, which has the softest leaf tissue, was most rapidly decomposed while Ochlandra, with its tough structure, was the slowest. Among the invertebrates, insects were the most important leaf colonizing animals, with Diptera, Coleoptera and Trichoptera the most dominant. The invertebrate variety in the mixed bags was higher than in the single‐species leaf bags, where Chironomidae dominated the colonizing assemblages. This study has shown that toughness, indicated by the ‘specific weight of leaf tissue’, and the quality of the leaves was more important in determining breakdown rates than their origin. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
  • 1 The direct effect of sunlight on the conditioning, breakdown and incorporation of leaf litter in stream food webs has not yet been considered. The aim here was to evaluate the effects of light intensity on the colonization of leaf litter by microorganisms and its resulting quality as food for the stonefly shredder Klapopteryx kuscheli.
  • 2 Leaf litter was conditioned for 2 months in an open reach of a second‐order stream in litter bags either exposed to or shaded from direct sunlight. Subsequently, we performed laboratory experiments to test larval consumption, growth, growth efficiency and feeding preference fed on both leaf litter treatments.
  • 3 Leaf litter in the unshaded treatment had three times more chlorophyll‐a (Chl‐a) than that in the shaded treatment, 50% lower fungal biomass and similar bacterial abundance. Although larvae did not prefer either food and fed at the same rate on both leaf litter treatments, they grew twice as fast on the shade‐conditioned leaves and attained a two‐fold higher growth efficiency.
  • 4 Sunlight can have significant effects on detritus‐based food webs. Riparian modification induced by human activities in forested catchments increases the potential for sunlight to influence detritus dynamics.
  相似文献   

17.
Leaf-pack dynamics in a southern African mountain stream   总被引:4,自引:0,他引:4  
SUMMARY 1. The occurrence, composition and invertebrate fauna of naturally-occurring leaf packs were studied over 24 months in Langrivier, a second-order mountain stream in the south-western Cape, South Africa. Langrivier is shallow and fast-flowing and stores very low levels of allochthonous detritus, although natural leaf packs form an obvious part of the energy base in the stream throughout the year. 2. The occurrence and size of the packs were influenced mainly by stream discharge and by the timing and character of leaf fall from riparian trees. Packs were smallest (minimum dry mass 17 g, minimum volume 1.7–10?5 m3) in winter when discharge was high, and largest (maximum dry mass 191 g, maximum volume 4.2–10?3 m3) in spring when discharge decreased and leaf fall from the evergreen riparian trees began. Through the year the packs covered a mean 0.41 % of the stream bed and had a mean abundance of 0.46 packs m?2 of stream bed. They were ephemeral, lasting on average <1.7 months and yet accounted for 29% of the stored detritus in the system. Wood was the dominant component of packs, and leaves at ali stages of decomposition were present throughout the year. 3. The ratio of numbers of invertebrates in packs: numbers of individuals in the benthos was very low (0.002–0.030), presumably because of the rarity and small size of the packs. Nevertheless, the density of invertebrates per unit area covered by leaf packs was consistently much higher than the density in an equivalent area of the benthos, except during peak leaf fall (October to December). 4. Experiments were undertaken with artificial leaf packs in order to determine the extent to which these simulated natural packs. Although both natural and artificial leaf packs contained a high proportion of Plecoptera (46% and 29% respectively), the natural packs contained high numbers of simuliid larvae (33% of total), whereas artificial packs had a high percentage of chironomid larvae (62%), Several other taxa regularly occurred in both types of pack but in very low numbers. In addition,  相似文献   

18.
Role of superoxide dismutase isozymes and other antioxidant enzymes was studied in relation to leaf age in sunflower (Helianthus annuus L. cv. ACC 1508) at pre-flowering and grain filling stages. Relative water content (RWC) did not change much in leaves of different age and at the two stages. Protein content declined continuously from the youngest to the oldest leaf, while chlorophyll (Chl) and carotenoids (Car) contents increased down to 7th/9th leaf and declined in subsequent older leaves. Protein, Chl and Car contents were higher at pre-flowering than at seed filling stage. Superoxide dismutase (SOD), its isozymes, and ascorbate peroxidase (APO) and catalase (CAT) activities were highest in the 9th leaf and declined in subsequent older leaves. SOD and APO activities were higher at seed filling, except in oldest senescent (13th, 15th) leaves. Among SOD isozymes, Cu/Zn-SOD and Mn-SOD activities accounted for most of the total SOD, and only marginal activity was observed for Fe-SOD. Peroxidase activity increased from youngest to the oldest leaf at pre-flowering stage and down to 13th leaf at seed filling stage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Multiple stable isotopes were used to determine the effectiveness of distinguishing among several dominant riparian species and aquatic macrophytes both spatially (three sites) and temporally (three seasons) along an 8-km reach of a blackwater stream. The differences in isotopic composition were used to assess contributions of various organic matter sources to the detrital pool of the stream. Samples of riparian and aquatic macrophyte vegetation and detritus were collected at three times to represent early leaf-out (April), mid-summer (August), and just prior to abscission (October). Each sample was analyzed for stable isotopes of carbon 13C, nitrogen 15N, and sulfur 34S Within a site and sampling date, 13C-values were significantly different among certain riparian species and detritus samples. Species differences persisted between seasons. 34S values were the most variable of the three elements examined although they remained fairly constant through time within each species and site. The results suggest that temporal changes in isotopic compositions of riparian species and aquatic macrophytes are site-specific. Discriminant analysis dissimilarity plots (based on all three isotopes) demonstrated that the contribution of species to the detrital pool depended on the site and season. At the upper site, detritus was isotopically most similar to Quercus laurifolia and Sparganium americanum in April, and the aquatic macrophytes (S. americanum and Potamogeton spp.) in August and October. At the middle site, detritus was most similar to Carpinus caroliniana and Q. nigra in April but no single source was similar to detritus in August or October. At the lower site, detritus was most similar to Taxodium distichum for all three seasons.  相似文献   

20.
Ardón M  Pringle CM 《Oecologia》2008,155(2):311-323
We examined the hypothesis that high concentrations of secondary compounds in leaf litter of some tropical riparian tree species decrease leaf breakdown by inhibiting microbial and insect colonization. We measured leaf breakdown rates, chemical changes, bacterial, fungal, and insect biomass on litterbags of eight species of common riparian trees incubated in a lowland stream in Costa Rica. The eight species spanned a wide range of litter quality due to varying concentrations of nutrients, structural and secondary compounds. Leaf breakdown rates were fast, ranging from 0.198 d−1 (Trema integerrima) to 0.011 d−1 (Zygia longifolia). Processing of individual chemical constituents was also rapid: cellulose was processed threefold faster and hemicellulose was processed fourfold faster compared to similar studies in temperate streams. Leaf toughness (r = −0.86, P = 0.01) and cellulose (r = −0.78, P = 0.02) were the physicochemical parameters most strongly correlated with breakdown rate. Contrary to our initial hypothesis, secondary compounds were rapidly leached (threefold faster than in temperate studies), with all species losing all secondary compounds within the first week of incubation. Cellulose was more important than secondary compounds in inhibiting breakdown. Levels of fungal and bacterial biomass were strongly correlated with breakdown rate (fungi r = 0.64, P = 0.05; bacteria r = 0.93, P < 0.001) and changes in structural compounds (lignin r = −0.55, P = 0.01). Collector−gatherers were the dominant functional group of insects colonizing litterbags, in contrast to temperate studies where insect shredders dominate. Insect biomass was negatively correlated with breakdown rate (r = −0.70, P = 0.02), suggesting that insects did not play an important role in breakdown. Despite a wide range of initial concentrations of secondary compounds among the eight species used, we found that secondary compounds were rapidly leached and were less important than structural compounds in determining breakdown rates. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号