首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
性别决定的分子机制复杂多样,但是处于动物性别决定的基因调控网络底部的一些调控基因具有相当高的保守性。doublesex(dsx)基因和male abnomal-3(mab-3)基因分别是果蝇(Drosophila melanogaster)和线虫(Caenorhabditis elegans)性别决定调控途径末端的重要基因,对这两个基因序列的比较导致了DM结构域的发现,它是已知在性别发育过程中最为保守的DNA结合结构域。目前,已  相似文献   

3.
大鳞副泥鳅3个Dmrt基因DM保守区的序列分析   总被引:1,自引:0,他引:1  
徐玲花  严镇钧  曾庆韬 《遗传》2008,30(11):1448-1452
摘要: 利用简并PCR克隆技术, 扩增和克隆了大鳞副泥鳅(Paramisgurnus dabryanus)Dmrt基因的DM结构域, 获得了3个具有不同DM序列的克隆。结果表明, 在大鳞副泥鳅基因组中存在Dmrt基因家族的多个成员。同源性比较和系统进化分析显示不同进化地位脊椎动物的Dmrt基因存在高度的进化保守性  相似文献   

4.
大熊猫Dmrt基因家族4个成员基因的克隆   总被引:8,自引:1,他引:8  
果蝇Doublesex基因、线虫Mab-3基因和人类DMRTI基因均含有一个新的具有DNA结合能力的保守基序,即DM结构域。它们在性别决定和分化发育的调控过程中具有相似的功能。通过简并PCR克隆技术,扩增和克隆了大熊猫基因组中的DM结构域,得到了4个具有不同DM序列的克隆。结果显示,在大熊猫基因组中存在Dmrt基因家族的多个成员。该基因家族在脊椎动物和非脊椎动物都具有高度的进化保守性。  相似文献   

5.
6.
Most animals reproduce sexually, but the genetic and molecular mechanisms that determine the eventual sex of each embryo vary remarkably. DM domain genes, which are related to the insect gene doublesex, are integral to sexual development and its evolution in many metazoans. Recent studies of DM domain genes reveal mechanisms by which new sexual dimorphisms have evolved in invertebrates and show that one gene, Dmrt1, was central to multiple evolutionary transitions between sex-determining mechanisms in vertebrates. In addition, Dmrt1 coordinates a surprising array of distinct cell fate decisions in the mammalian gonad and even guards against transdifferentiation of male cells into female cells in the adult testis.  相似文献   

7.
8.
9.
Zhang J 《Genetics》2004,166(4):1887-1895
  相似文献   

10.
山地麻蜥7个Dmrt基因成员的克隆及序列分析   总被引:1,自引:0,他引:1  
Dm rt基因家族是一个与性别决定相关的基因家族。该家族成员都含有一个具有DNA结合能力的保守基序———DM结构域,在性别决定和分化发育的调控中担负着重要的功能。本文采用简并PCR技术,扩增和克隆了山地麻蜥(Erem ias breuchleyi)基因组中的DM结构域,通过SSCP技术筛选和测序得到了7个具有不同DM序列的克隆。结果显示,在山地麻蜥基因组中存在着Dm rt基因家族的多个成员,与其他动物相关的Dm rt基因进行聚类分析,显示该基因家族在动物系统进化上具有高度的保守性。  相似文献   

11.
12.
The Pacific oyster Crassostrea gigas is a successive not systematic protandric hermaphrodite. Searching for an ortholog to Dmrt1, a conserved sex determinism factor, we have identified the first complete cDNA of a DM factor in Lophotrochozoa which we have called Cg-DMl (Crassostrea gigas DMRT-like). It is 359aa long, with the DM domain common to all the family factors, and one DMA domain specific to members such as Dmrt4 and Dmrt5. Its gene presents one intron of 598 bp. Real time PCR and in situ hybridization have shown that Cg-DMl was expressed in both sexes, with a significantly higher expression in male than in female gonads at the end of the adult gametogenetic cycle and that a significant peak of expression was observed in spat between 1 and 2 months of age. These results suggest that Cg-DMl may be involved in the development of the gonad and may constitute preliminary clues for future work in order to better understand DM protein evolution.  相似文献   

13.
14.
The DMRT gene family in amphioxus   总被引:1,自引:0,他引:1  
  相似文献   

15.
Dmrt基因在水生生物中的研究进展   总被引:1,自引:0,他引:1  
  相似文献   

16.
Hu Y  Ren Y  Luo RZ  Mao X  Li X  Cao X  Guan L  Chen X  Li J  Long Y  Zhang X  Tian H 《Journal of lipid research》2007,48(8):1681-1688
Increased plasma triglyceride and free fatty acid levels are frequently associated with type 2 diabetes mellitus (T2DM). To test the hypothesis that LPL gene mutations contribute to the hypertriglyceridemia observed in members of T2DM pedigrees, we screened the LPL gene in 53 hypertriglyceridemic members of 26 families. Four known and three novel mutations were identified. All three novel mutations, Lys312insC, Thr361insA, and double mutation Lys312insC + Asn291Ser, are clinically associated with hypertriglyceridemia. In vitro mutagenesis and expression studies confirm that these variants are associated with a significant reduction in LPL activity. The modeled structures displaying the Lys312insC and Thr361insA mutations showed loss of the activity-related C-terminal domain in the LPL protein. Another novel double mutation, Lys312insC + Asn291Ser, resulted in the loss of the catalytic ability of LPL attributable to the complete loss of the C-terminal domain and alteration in the heparin association site. Thus, these novel mutations of the LPL gene contribute to the hypertriglyceridemia observed in members of type 2 diabetic pedigrees.  相似文献   

17.
The purpose of this study is to examine the effect of mutation on tyrosine kinase hINSR gene of DM Type 2 patients reduce the IRS- 1 activation by in silico analysis. Blood DNA of DM Type 2 patients from Saeful Anwar Hospital Malang were amplified and sequenced by specific primers of tyrosine kinase domain of hINSR gene. These gene sequences were converted to protein sequence by BLAST and the IRS-1 protein sequence is retrieved from NCBI database. Both of the protein sequence was aligned by using Bio edit version 5.0.6. The model of three dimension protein was predicted by SWISS MODEL webserver, and visualized the structure alteration by using Pymol 0.99rc6 and Hex 5.0, and then superimpose of the hINSR and IRS-1 interaction were examined by docking using Hex 5.0. The results showed that one substitution and one deletion of 8-3F patient exon-22 hINSR gene tyrosine kinase domain cause loss of four helixes and three coils structures on tyrosine kinase hINSR protein. Six-deletions and six-substitutions on same gene domain of DMK9 patient changed the two helixes became coil structure. The binding energy of hINSR tyrosine kinase with IRS-1 of normal is E= -494.67 kJ/mol, DMK9 patient is E= -458.4 kJ/mol, and 8-3F patient is E=-544.20 kJ/mol. The DMK9 patient prognosis has better physiological condition than 8-3F patient. Interaction between 8-3F of hINSR tyrosine kinase domain mutation and PTB domain IRS-1 is more spontaneous than DMK9, but both of them were reduced on IRS-1 activation respectively.  相似文献   

18.

Background:  

The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences.  相似文献   

19.
Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development we find that murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. Dmrt1 may also play a role in avian sexual development. In birds the heterogametic sex is female (ZW), and the homogametic sex is male (ZZ). Dmrt1 is Z-linked in the chicken. We find that chicken Dmrt1 is expressed in the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels in ZZ than in ZW embryos. Based on sequence, map position, and expression patterns, we suggest that Dmrt1 is likely to play a role in vertebrate sexual development and therefore that DM domain genes may play a role in sexual development in a wide range of phyla.  相似文献   

20.
To evaluate if potential defects in the FAD-binding domain of the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) gene could contribute to susceptibility to type 2 diabetes mellitus, we have screened 151 type 2 DM patients for mutations using PCR single-strand conformational polymorphism. Both a single substitution (T to A) at position 18 and a 6-base-pair deletion (TTTTAA) at position 26 of intron 3 have been detected in five type 2 DM patients and in one control subject. The evolution time of diabetes was longer in patients with these mutations than in patients without (24.2 +/- 11.1 vs 12.6 +/- 8.7 years, p < 0.02). These mutations generate a cryptic site that may have functional significance in the correct mechanism of the FAD-binding domain. In the process of PCR amplification of the mGPDH gene we also unexpectedly amplified the mGPDH retropseudogene. Subsequently, we decided to further characterize and completely sequence 2213 bp of this mGPDH retropseudogene. Our results suggest that two previously reported mGPDH pseudogene partial sequences may be identical copies of the mGPDH gene inserted in two different genomic locations and provide information about the alternative 5'- and 3'-untranslated regions. The data obtained are also important in order to avoid artifactual amplification of the mGPDH pseudogene in the process of screening for mGPDH mutations in diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号