首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Modifier genes have been described that convert the soft endosperm of opaque2 mutants to a hard, vitreous phenotype. The mode of action and the components of the genetic system involved in this seed modification are poorly understood. We used genetic and biochemical analyses to investigate the number of opaque2 modifier genes, their mode of action and their relationship to the biochemical alterations in the modified endosperm. Using two inbred opaque2 lines, we showed that the activity of opaque2 modifier genes is influenced by the genetic background. Analysis of segregating progenies and recombinant inbred lines derived from crosses between opaque2 and modified opaque2 genotypes indicated two independent loci affecting seed opacity and density. Consistent association between endosperm modification and enhanced accumulation of the gamma-zein storage protein suggested that either this protein is directly involved in the process of seed modification, or else that a modifier gene could be tightly linked to the genes responsible for gamma-zein synthesis.  相似文献   

2.
Summary Vigorously growing suspension cultures of normal, amylose-extender (ae) and waxy (wx) maize endosperm were established from near isogenic lines of maize inbred A636. The recovery of the ability to produce vigorous cultures of ae and wx endosperm by backcrossing demonstrate the genetic control of endosperm growth in vitro. Phenotypic expression of the endosperm mutants in culture was studied by examining the properties of starch accumulated in endosperm cultures and starch from developing and mature kernels of the same genotype. After 9 months in culture, the amylose contents of the starch in normal callus tissue and normal endosperm tissue were not significantly different, 28.2% and 31.7%, respectively. Starch granules from normal cultures and endosperm stained blue-black with iodine and were round to polygonal in shape. The starches of wx endosperm and callus cultures contained no amylose, and wx starch granules stained brown-orange with iodine. Although, wx starch granules were primarily round, a few granules with jagged edges were observed in starch samples isolated from cultures and kernels. The percent amylose in starch from ae callus was significantly lower than the amylose content of starch from ae endosperm tissue, 39.9% and 67.7%, respectively. Starch granules from ae endosperm and cultures were smaller than normal and wx starch granules. Irregular starch granules which are typical of ae endosperm were present in ae callus tissue, but were less frequently observed. We conclude that specific endosperm mutant phenotypes are expressed in vitro.Supported in part by the United States Department of Agriculture Competitive Grant 85-CRCR-1-1740. Contribution No. 94, Department of Horticulture. The Pennsylvania State University. Authorized for publication as paper No. 7373 in the journal series of the Pennsylvania Agricultural Experiment Station  相似文献   

3.
Early cellularization of the free-nuclear endosperm and subsequent differentation of the aleurone cells in the ventral region of the developing wheatgrain (Triticumaestivum L. cv. Heron) were examined using both light and electron microscopy. In ovules harvested 1 d after anthesis, irregular wall ingroths typical of transfer cells protrude into the multinucleate cytoplasm. Initital cellularization occurs by a process of free wall formation in much the same fashion as in the dorsal region of the grain. In places, sheets of endoplasmic reticulum and dictyosomes appear to be closely associated with the growing wall. Like the wall ingrowths noted earlier, the freely growing walls are intensely fluorescent after staining with aniline blue. Initiatal cellularization is complete 2–3 days after anthesis. Unlike the first-formed cells in the dorsal region of the developing grain, those in the ventral region are not meristematic. These amitotic cells become the groove aleurone cells which at an early stage of development are set apart from the rest of the endosperm by their irregularly thickened walls and dense cytoplasm. Autofluorescence is first apparent in the walls of those cells next to the degenerating nucellus. In contrast to the aleurone cells in the dorsal region of the grain, at maturity only the inner wall layer of each of the groove aleurone cells remains autofluorescent. The aleurone grains are highly variable in appearance and contain no Type II inclusions.  相似文献   

4.
Summary Accessions of eight Lycopersicon species and five yellow-flowered Solanum species were used as males in crosses with 2x and 4x L. esculentum to observe seed set and progeny ploidy. Species which failed in crosses to L. esculentum were crossed as males to 2x and 4x L. peruvianum. In cases of low seed set, chromosome counts were undertaken to establish the nature of the progeny. Endosperm Balance Number (EBN) relationships were determined for the crossability groups. Results support the basic concept of an L. esculentum crossability complex and an L. peruvianum crossability complex. Within the L. esculentum complex, all EBNs appear identical with a value of 2. Within the L. peruvianum complex, more variability appears to exist. The EBN values of this group are higher, and may be approximately double those of the L. esculentum complex. The EBN of L. peruvianum var humifusum appears to be somewhat lower than other L. peruvianum types. The EBN values of S. lycopersicoides, S. rickii, S. ochranthum and S. juglandtfolium could not be determined experimentally. Differential aspects of Lycopersicon and tuber-bearing Solanum evolution may be interpreted on the basis of endosperm compatibility.Co-operative investigation of the Vegetable Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, and the Wisconsin Agricultural Experiment Station  相似文献   

5.
6.
Puroindolines, the tryptophan-rich proteins controlling grain hardness in wheat, appeared as two pairs of 13 kDa polypeptides in the Acid-PAGE (A-PAGE) and two-dimensional A-PAGE×SDS-PAGE patterns of starch-granule proteins from wild allotetraploid wheat Aegilops ventricosa Tausch. (2n = 4x = 28, genomes DvDvNvNv). Puroindoline pair a1 + a2 reacted strongly with an antiserum specific for puroindoline-a from common wheat (Triticum aestivum L.), whereas puroindoline pair b1 + b2 exhibited A-PAGE relative mobilities similar to that of puroindoline-b in Aegilops tauschii (Coss.), the D-genome donor to both common wheat and Ae. ventricosa. Puroindolines a2 and b1 were found to be encoded by alleles Pina-D1a and Pinb-D1h on chromosome 5Dv, respectively, whereas puroindolines a1 and b2 were assumed to be under the genetic control of chromosome 5Nv. Puroindoline a1 encoded by the novel Pina-N1a allele exhibited a high level of amino acid variation with respect to puroindoline-a. On the other hand, the tryptophan-rich region of puroindoline b2 encoded by allele Pinb-N1a showed a sequence change from lysine-42 to arginine, with no effect on the amount of protein b2 accumulated on the starch granules. A partial duplication of the pin-B gene (Pinb-relic) was identified about 1100 bp downstream from Pinb-D1 on chromosome 5Dv. The present findings are the first evidence of a tetraploid wheat species in which four puroindoline genes are expressed. The potential of Ae. ventricosa as a source of genes that may be used to modulate endosperm texture and other valuable traits in cultivated wheat species is discussed.  相似文献   

7.
Summary In the progeny of an active Mutator plant, the number of Mu elements increases on self-pollination and maintains the average parental Mu content on outcrossing to a non-Mutator line; both patterns of transmission require an increase in the absolute number of Mu elements from one generation to the next. The same average copy number of Mu elements is transmitted through the male and female, but there is wide variation in the absolute copy number among the progeny. In inactive Mutator plants —defined both by the loss of somatic instability at a reporter gene (bronze2-mu1) and by modification of the HinfI sites in the terminal inverted repeat sequences of Mu elements —the absolute copy number of Mu elements is fixed in the parent. Thus, in outcrosses Mu element number is halved, and on self-pollination Mu copy number is constant. Reactivation of somatic mutability at cryptic bz2-mu1 alleles in inactive individuals by crossing to an active line seems not to involve an increase in Mu element copy number transmitted by the inactive individual. These and other results suggest that increases in Mu copy number occur late in plant development or in the gametophyte rather than after fertilization.  相似文献   

8.
C. R. Lending 《Protoplasma》1996,195(1-4):68-77
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. Protein body formation in normal genotypes occurs via a sequential deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about l m. In the endosperm mutantopaque-2 the level of one zein class is reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype displayed in normal genotypes, presumably due to the decrease in total zein protein at the time of desiccation. Previous microscopic examination ofopaque-2 protein bodies at 22 DAP (days after pollination) showed that the protein bodies were morphologically similar to those of normal genotypes. However, the endosperm ofopaque-2 maize at 14 DAP contains tubular arrays within the rough endoplasmic reticulum. These tubular arrays are tightly associated with the developing protein bodies. Long strands of tubules, sometimes 10 m in length, are observed in the endosperm, and partially formed protein bodies often seem to be forming directly from these tubular arrays. No immunostaining is associated with this tubular material when any of the anti-zein antibodies are used.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

9.
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. These proteins, collectively called zeins, are translocated into the lumen of the rough endoplasmic reticulum, where they assemble into protein bodies. Protein body formation in normal genotypes occurs via an ordered deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about 1 m. These structures consist of a central core that contains predominantly -zein; this central region is surrounded by a peripheral layer of - and -zeins, and the entire structure is bounded by rough endoplasmic reticulum.In the endosperm mutant floury-2 the levels of all classes of zeins are reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype observed in normal genotypes. In contrast to the discrete, spherical protein bodies which are formed in normal maize endosperm, the protein bodies within floury-2 endosperm are irregular and the zeins are disorganized; patches of - and -zeins occur within irregularly lobed clusters of -zein within the lumen of the rough endoplasmic reticulum. The implications of this aberrant distribution are discussed, both with respect to protein body development and kernel characteristics.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号