首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation of murine embryos with trehalose and glycerol   总被引:6,自引:1,他引:5  
Several concentrations of trehalose (0.0, 0.04, 0.1, 0.25 M) in combination with three concentrations of glycerol (1.0, 1.5, 2.0 M) were evaluated for the cryopreservation of murine embryos. Embryos were transferred through increasing concentrations of glycerol in Dulbecco's phosphate-buffered saline with 10% fetal calf serum (PBS + FCS) to reach the final glycerol concentrations. They were then randomly assigned to one of the concentrations of trehalose. A total of 506 morulae were packaged individually in 0.25-ml plastic straws and cooled from ambient temperature at 1.0 degrees C/min in a programmable methanol freezer. Embryos were seeded at -7 degrees C and then cooled to -25 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. After thawing and a one-step dilution of glycerol, embryos were cultured for 48 hr and viability was determined by blastocoel formation. Highest viability (70.0%) after 48 hr in culture was obtained for embryos frozen in 1.5 M glycerol plus 0.10 M trehalose as compared to 31% viability for embryos frozen with glycerol alone. These observations suggest that trehalose can be used in combination with glycerol as a cryoprotectant and that a high rate of viability can be achieved after a one-step dilution of the cryoprotectants.  相似文献   

2.
Several concentrations of glycerol for cryoprotection and several concentrations of sucrose for cryoprotectant dilution were examined with frozen, thawed and cultured mouse embryos. Four hundred and eighty late morulae to early blastocyst stage embryos were collected from 35 superovulated mice (B6D2 x Swiss Webster crosses back-crossed to Swiss Webster males) 3-1/2 days after breeding. The embryos were transferred through increasing concentrations of glycerol in modified Dulbecco(1)s phosphate buffered saline (MDPBS) to reach three final concentrations of 1.0 M, 1.4 M and 1.8 M. The embryos were loaded in 0.5-ml French straws appropriately filled with the cryoprotectant and sucrose solutions for each treatment. The straws were cooled with a standard fast-freezing program to -35 degrees C, then plunged into liquid nitrogen. After 58 days of storage at -196 degrees C the straws were thawed in a 37 degrees C water bath. Cryoprotectant dilution was accomplished with a standard step-wise procedure or in the straw with one of three concentrations of sucrose solution (0.25 M, 0.5 M, 1.0 M) in MDPBS. The embryos were then washed twice in MDPBS, twice in Whitten's media for embryo culture and then placed in microdrops of Whitten's media under paraffin oil in a water saturated 5% CO(2) in air atmosphere at 37 degrees C. Embryos were observed 24 hours later for development to the expanded blastocyst stage. The proportion of embryos developing in vitro from the three glycerol concentrations were not significantly different with standard step-wise dilution procedures for glycerol removal. After step-wise cryoprotectant removal, blastocyst expansion occurred in 49%, 44% and 52% of embryos frozen in 1.0 M, 1.4 M and 1.8 M glycerol, respectively. The 1.0 M sucrose dilution of 1.0 M glycerol showed the highest development (60.5%) in vitro but was not significantly different from any of these three step-wise diluted glycerol concentrations. The step-wise dilution of the three glycerol concentrations and dilution of the 1.0 M glycerol and 1.0 M sucrose were all superior (P < 0.01) to any other dilution procedure examined.  相似文献   

3.
Weber PK  Youngs CR 《Theriogenology》1994,41(6):1291-1298
The objective of this study was to examine the potential toxicity of sucrose (Experiment 1) and of various cryoprotectants (Experiment 2) to porcine preimplantation embryos. In Experiment 1, 65 embryos, ranging from compact morulae to hatched blastocysts, were allocated within donor female across 5 concentrations of sucrose (0, 0.25, 0.50, 1.0, 2.0 M) to determine the highest concentration that would not inhibit subsequent embryo development. After a 48-h post-treatment culture period, the embryos were stained and cell nuclei were counted. The concentration of sucrose affected embryo development (P < 0.001) and embryo quality (P < 0.001). Embryos placed into 2.0 M sucrose exhibited poorer development and quality than embryos at the lower 4 concentrations, which were not different from one another. In Experiment 2, 182 embryos of the same developmental stages as in Experiment 1 were collected from 16 donors. Embryos were allotted within donor female to 2 of the 5 concentrations (10, 20, 30, 40, or 50%) of each of 3 cryoprotectants (ethylene glycol, propylene glycol, glycerol). After a 30-sec exposure to a cryoprotectant, the embryos were cultured and stained as in Experiment 1. As the concentration of an individual cryoprotectant increased beyond 30%, embryo development decreased. Embryos exposed to glycerol or propylene glycol exhibited poorer development than did embryos placed into ethylene glycol, especially at concentrations of 40% or higher.  相似文献   

4.
Saito N  Imai K  Tomizawa M 《Theriogenology》1994,41(5):1053-1060
We investigated the effect of addition of sugars to a vitrification solution on the survival rate of bovine blastocysts produced in vitro. In vitro-matured (IVM) and in vitro-fertilized (IVF) bovine Day-6 to Day-8 bovine blastocysts were classified into 3 developmental stages: early blastocysts, blastocysts and expanded blastocysts. The blastocysts were cryopreserved in 1 of 3 vitrification solutions: 1) 25% glycerol25% ethylene glycol (GE); 2) 20% glycerol20% ethylene glycol3/4 M sucrose (GES); and 3) 20% glycerol20% ethylene glycol3/8 M sucrose3/8 M dextrose (GESD). The basic solution was Dulbecco's PBS supplemented with 20% of fetal calf serum. Embryos were exposed to each vitrification solution in 3 steps, and after loading into 0.25-ml straws, were plunged into liquid nitrogen. After warming in water bath at 20 degrees C, cryoprotectants were diluted in 1/2 M and 1/4 M sucrose each for 5 min. Equilibration and dilution procedure except warming were conducted at room temperature (23 to 27 degrees C). After dilution, the embryos were cultured in Ham's F10 medium0.1 mM beta-mercaptoethanol20% fetal calf serum. Survival rates of embryos at 48 h of incubation of each of the 3 developmental stages (early blastocysts, blastocysts and expanded blastocysts) exposed to the 3 types of the vitrification solutions (GE, GES and GESD) were 23.5, 33.3, 65.8% (early blastocysts, blastocysts and expanded blastocysts respectively) in GE, 55.6, 71.9, 90.5% in GES and 84.6, 83.3, 95.8% in GESD respectively. These results indicate that a mixture of 25% glycerol25% ethylene glycol is not suitable for vitrification of early bovine blastocysts; however, addition of sugars to the solution significantly (P<0.01) improved the survival rate of the vitrified blastocysts, independently of their stage of development.  相似文献   

5.
Vitrification using open pulled straw (OPS) has provided encouraging results with embryos from other species. The aim of this study was to compare the survival of 6.5- and 6.75-day-old equine embryos after OPS vitrification and slow-cooling. Eighteen embryos were frozen using a slow-cooling method. Embryos were placed in modified PBS with increasing glycerol concentration (2.5%, 5%, 7.5% and 10% (v/v) 5 min each). Embryos were loaded into 0.25 ml straws then placed in a programmable freezer and subsequently plunged into liquid nitrogen. After thawing, cryoprotectant was removed by five steps with decreasing glycerol and sucrose concentrations. Twenty embryos were vitrified using the OPS method. Embryos were exposed to 7.5% dimethyl-sulfoxide (DMSO)+7.5% ethylene glycol (EG) for 3 min and in 18% DMSO+18% EG+0.4M sucrose for 1 min, loaded in OPS and plunged into liquid nitrogen. After warming, embryos were placed in decreasing sucrose concentrations. All embryos were cultured in synthetic oviduct fluid (SOF) medium for 3h and evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining. The percentage of cells entering in S-phase (%SC) was evaluated by incorporation of BrdU. No significant differences were observed for mean diameter, morphological grade and percentage of degenerate embryos after 3h of culture for slow-cooling and OPS methods. The percentage of dead cells per embryo was similar for the two procedures (42+/-6 versus 46+/-9). The percentage of cells entering in S-phase did not differ significantly between the two procedures (27+/-5 versus 26+/-6). OPS vitrification may be as efficient as slow-cooling for the cryopreservation of equine embryos. However, these results should be confirmed by the transfer of OPS vitrified embryos to recipient mares.  相似文献   

6.
Sheep embryos of the late morula to early blastocyst stage were frozen, thawed and cultured to test several sucrose solutions for post-thaw dilution of the cryoprotective agent glycerol. Ewes of mixed breeding were superovulated and embryos were flushed from the uterus either surgically or at slaughter 5 d after estrus. Fifty-eight embryos were pooled in microdrops of modified Dulbecco's phosphate buffered saline (MDPBS) then randomly divided into four treatments. A 2 x 2 factorial design was used to compare 0.25 M sucrose in MDPBS as an in-straw cryoprotectant dilution with a standard step-wise dilution procedure within standard fast and slow freeze-thaw systems. After storage in liquid nitrogen for 6 to 8 d, the embryos were thawed and the cryoprotectant (1.4 M glycerol) removed before culture in microdrops of modified synthetic oviduct fluid under paraffin oil in water-saturated 5% CO(2) in air atmosphere at 37 C. No significant interaction was found between the freeze-thaw procedure and cryoprotectant + dilution procedures. Embryos in the fast freeze-thaw procedure had a mean development score of 1.3 +/- 0.3 and those in the slow freeze-thaw procedure had a mean score of 1.2 +/- 0.3. The mean development score 2.0 +/- 0.3 for the standard dilution procedure was superior (P<0.001) to the score of 0.6 +/- 0.2 for the 0.25 M sucrose dilution procedure. In a separate trial, 18 sheep morulae were collected and equilibrated with 1.4 M glycerol in MDPBS. A standard fast freeze-thaw procedure was used and, after 18 d of storage at -196 C, the glycerol was diluted from the embryo with 1.0 M sucrose. Culture was conducted in a similar manner and a mean development score of 1.0 +/- 0.3 was obtained. These results indicate standard cryoprotectant dilution procedures for sheep embryos are superior to dilution with 0.25 M sucrose. In a limited study, dilution with 1.0 M sucrose was also not as effective as standard dilution procedures.  相似文献   

7.
A method for obtaining a high survival rate of frozen-thawed mouse embryos is presented. Eight-cell mouse embryos were frozen inside small plastic straws in the presence of 1-2 propanediol and stored at -196 C. After thawing, the embryos were diluted for only 5 min in a 1.0 M sucrose solution to remove the 1-2 propanediol from the cells. At high rate of thawing (is equivalent to 2500 C/min) more than 88% of the embryos survived in vitro to the blastocyst stage provided that the dilution of propanediol was performed rapidly during thawing. At a lower rate of thawing (is equivalent to 300 C/min), survival tended to be higher (94.7%) when dilution was done 5 min after thawing. When the frozen-thawed embryos were transferred to the oviducts of day 1 pseudopregnant recipients either directly after the dilution of 1-2 propanediol or after 24 or 48 hr of culture, a high proportion of them (65.9%) develop normally to viable fetuses.  相似文献   

8.
The aim of the present study was to compare the survival rates of goat morulae and blastocysts after different freezing procedures. The viability of frozen-thawed embryos was assessed both in vivo and in vitro. Two cryoprotectants, ethylene glycol and glycerol, were used and three cryoprotectant removal procedures were compared: progressive dilution in 1.0, 0.5, 0.3 and 0 M of cryoprotectant in PBS; a similar progressive dilution with cryoprotectant in PBS plus 0.25 M of sucrose; or one-step transfer in PBS containing 0.25 M of sucrose. In vitro development of frozen-thawed blastocysts was always higher than that of frozen morulae irrespective of the cryoprotectant (52 129 = 40.3% vs 23 161 = 14.3% ; P< 0.001). In vivo, however, frozen-thawed morulae developed equally as well as blastocysts after an identical freezing-thawing protocol. Development both in vivo and in vitro showed ethylene glycol to be a better cryoprotectant than glycerol for goat embryos at both developmental stages (23 vs 0%, 45 vs 35% in vitro; 34.5 vs 21%, 35 vs 23% in vivo for morulae and blastocysts, respectively).  相似文献   

9.
The objective of this study was to investigate the in vitro and in vivo developmental abilities of equine embryos cryopreserved by vitrification. Twenty-eight embryos were recovered from Native pony and Thoroughbred mares at Days 5 to 7 by nonsurgical uterine flushing (detection of ovulation=Day 0). The vitrification solution contained 40% ethylene glycol, 18% Ficoll, and 0.3 M sucrose in PBS. The embryos were placed for 1 to 2 min in vitrification solution (Group 1) or following exposure to 20% ethylene glycol in PBS for 10 to 20 min (Groups 2 and 3). Single embryos were loaded in 0.25-ml straws, cooled for 1 min in liquid nitrogen vapor and immersed in liquid nitrogen. Straws were warmed in water (20 degrees C, 20 sec), and the contents were expelled with 0.5 M sucrose in PBS. Then the sucrose was diluted in 1-step (Groups 1 and 2) or 4-steps (Group 3). Embryos (n=21) were cultured for 120 h in TCM199 supplemented with 10% fetal bovine serum at 37 degrees C in 5% CO(2) in air and evaluated morphologically. Development to the hatching or hatched blastocyst stage was obtained in 0 7 , 4 7 and 4 7 embryos in Groups 1, 2 and 3, respectively. An additional 7 embryos were vitrified-warmed according to the treatment of Group 2 (4 embryos) and Group 3 (3 embryos). Five embryos were selected after in vitro culture for 4 h and were transferred nonsurgically into the uterine horn of Day-4 recipient mares. Transfer of 2 embryos (both Day-6 blastocysts: Group-2 treatment) resulted in pregnancies with a viable fetus at Day-60 of the gestation period.  相似文献   

10.
Piglets born after vitrification of embryos using the open pulled straw method   总被引:13,自引:0,他引:13  
Morulae and unhatched blastocysts from Large White hyperprolific (LWh) and Meishan (MS) gilts were selected to test an ultrarapid open pulled straw (OPS) vitrification method with two media. The viability of vitrified/warmed embryos was estimated by the percentage of embryos that developed to the hatched blastocyst stage in vitro or by birth after transfer. In Experiment 1, two cryoprotectant dilution media were compared for cryopreservation of MS and LWh blastocysts: TCM was a standard Hepes-buffered TCM199 + 20% NBCS medium and PBS was a PBS + 20% NBCS medium. After a two-step equilibration in ethylene glycol, dimethyl sulfoxide, and sucrose, 2-5 blastocysts were loaded into OPS and plunged into liquid nitrogen. Embryos were warmed; a four-step dilution with decreasing concentrations of sucrose was applied. In PBS, LWh blastocysts (27%) had a lower viability in vitro than MS blastocysts (67%; P = 0.001). In TCM, no significant difference was observed between genotypes (41% for LWh and 43% for MS blastocysts) and both viability rates were lower than that of the control groups. In Experiment 2, morula-stage LWh and MS embryos were vitrified and warmed using PBS. The viability rate was low and did not differ between LWh (11%) and MS (14%). In Experiment 3, 200 MS and 200 LWh blastocysts were vitrified/warmed as described in Experiment 1 (PBS). In each of 20 MS recipients, 20 embryos were transferred. The farrowing rate was 55% and recipients farrowed four and five piglets (median) for MS and LWh blastocysts, respectively. The OPS method is therefore appropriate for cryopreservation of unhatched porcine blastocysts.  相似文献   

11.
The osmotic behavior of bovine blastocysts produced in vitro was filmed during exposure to and dilution of cryoprotectant solutions used for vitrification. The relationship between the changes in the diameter of embryos and their subsequent survival was assessed. Embryos collected on Day 6 and Day 7 postinsemination were exposed to 10% glycerol (GLY) for 5 min, 10% GLY + 20% ethylene glycol (EG) for 5 min, and 25% Gly + 25% EG for 30 s, before dilution in 0.85 M galactose and finally in embryo transfer freezing medium (ETF). Embryos that had a higher probability of survival behaved as perfect osmometers, shrinking, reexpanding, or swelling according to an identical pattern, whereas embryos that deviated from this standard usually did not survive. The initial embryo diameter, duration of shrinkage and expansion in 10% glycerol, duration of reexpansion in ETF, and final embryo diameter were clearly predictive of the ability to hatch after culture in vitro. On a given day postinsemination, larger blastocysts were more likely than smaller blastocysts to survive and hatch after exposure to cryoprotectants with or without vitrification.  相似文献   

12.
The use of soybean lecithin in an glycerol-based solution for slow freezing of in vitro matured, fertilized and cultured (IVMFC) bovine embryos was examined. Embryos were developed in vitro in INRA Menezo's B2 medium supplemented with 10% fetal calf serum (FCS) on Vero cells monolayers. Day 7 blastocysts were frozen in a two-step protocol consisting of exposure to 5% glycerol and 9% glycerol containing 0.2 M sucrose in F1 medium + 20% FCS. Soybean lecithin was either added or not to the freezing solutions at a final concentration of 0.1% (w/v). In Experiment 1, blastocysts were equilibrated in cryoprotectant solutions without cooling. Cryoprotectant was diluted from embryos with 0.5 M and 0.2 M sucrose. The percentages of fully expanded and hatched blastocysts treated with or without lecithin after 24 and 48 h in culture were not significantly different (100 versus 100% and 93.3 versus 100%, respectively). In Experiment 2, the in vitro survival of frozen-thawed IVMFC blastocysts was compared when cryoprotectant solutions were either supplemented or not with lecithin. No significant effect of lecithin was found on the ability of frozen-thawed blastocysts to re-expand after 48 h in culture (65.6 and 54.2%, respectively). However, the post-thaw hatching rate of embryos cryopreserved in the presence of 0.1% lecithin was significantly higher after 72 h in culture (52 and 31.8%, respectively). In Experiment 3, the ability of frozen-thawed IVMFC blastocysts to establish pregnancy following single embryo transfer was determined. Transfers of 58 and 66 frozen-thawed embryos cryopreserved with or without lecithin resulted in 6 and 10 (10.3 and 15.1%, respectively) confirmed pregnancies at Day 60. Addition of lecithin to cryoprotectants did not improve the in vivo development rate of cryopreserved IVMFC bovine blastocysts.  相似文献   

13.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

14.
An integrated bovine embryo transfer program was conducted in collaboration with 11 Japanese prefectural livestock experiment stations. The program was conducted to evaluate the practicability of the direct transfer method for bovine embryos frozen-thawed in the presence of propylene glycol (PG) or ethylene glycol (EG) under on-farm conditions. Embryos at the compacted morula to expanded blastocyst stages were collected from superovulated donors on Day 7 or 8 after estrus and equilibrated in 1.6 M PG or 1.8 M EG in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 20% heat-inactivated calf serum. Embryos were then loaded individually into a 0.25-ml straw and placed directly into a cooling chamber of a programmable freezer precooled to -7 degrees C. After 2 min, the straw was seeded, maintained at -7 degrees C for 8 min more, and then cooled to -30 degrees C either at 0.3 degree C/min or 0.5 degree C/min before being plunged into liquid nitrogen. Embryos at the same stages were also frozen in the presence of 1.4 M glycerol (GLY) by a conventional method, which served as a control. The frozen embryos were thawed by allowing the straws to stand in air for 5 to 10 sec and then immersing them in a 30 degrees C water bath. Embryos frozen-thawed in the presence of PG or EG were nonsurgically transferred into the uterine horn without diluting the cryoprotectant. Embryos frozen-thawed in the presence of GLY were nonsurgically transferred after removing GLY either by the stepwise method (GLY-I) or by in situ dilution with 0.3 M sucrose solution (GLY-II). A total of 1,273 (PG: 400, EG: 418, GLY-I: 177, GLY-II; 278) frozen-thawed embryos was transferred into recipients, yielding 545 pregnancies (overall: 42.8%, PG: 36.0%, EG; 44.7%, GLY-I; 48.6%, GLY-II; 46.0%). The pregnancy rate with PG was significantly lower than that with EG or GLY-II (P < 0.05). The pregnancy rate was affected by the type of cryoprotectant, the region where the embryo transfer program was carried out, the developmental stage of the embryos, the parity of the recipients, and corpus luteum (CL) quality of the recipients. There were no differences in rates of abortion and stillbirth among the 3 cryoprotectants. The present study demonstrates that EG can be effectively used as a cryoprotectant for freezing and direct transfer of bovine embryos, and that the direct transfer method is applicable under on-farm conditions.  相似文献   

15.
The relative volume of Day-3 mouse embryos changed as a linear function of the reciprocal of osmolality [corrected] of non-permeating solutes after 10 min exposure to sucrose and glycerol-sucrose solutions at 20 degrees C. The slope of the linear regression line was less in glycerol-sucrose than in sucrose solutions because glycerol permeation caused re-expansion. Before freezing by direct transfer to -180 degrees C the embryos were placed into glycerol-sucrose in 1-step (1-step equilibration) or first into glycerol and then into glycerol-sucrose (2-step equilibration). Using 2-step equilibration the post-thaw survival rate was substantially higher at 3.0 and 4.0 M-glycerol levels and less dependent on changes in the sucrose concentration within the range of 0.125 to 1.0 M than with 1-step equilibration. Under optimal conditions 90-95% of rapidly frozen embryos developed to blastocysts in vitro and 30% into live young in vivo. It is suggested that the cryoprotective role of glycerol is due to its ability to reduce osmotic pressure differences between the extra and intracellular spaces during rapid freezing of embryos.  相似文献   

16.
In Study 1 over 2000 4- to 8-cell mouse embryos were randomly pooled and assigned to 1 of 12 treatment groups. A 2 X 2 X 3 factorial design was used to analyze two types of cryoprotectant/post-thaw (PT) dilutions (dimethyl sulfoxide [Me2SO]/stepwise dilution versus glycerol/sucrose dilution), two storage containers (glass ampoules versus plastic straws), and three cooling treatments. Two commercial, controlled-rate freezing machines were examined, employing either nitrogen gas (Planer) or thermoelectric (Glacier) cooling. Embryos were cooled slowly (0.5 degrees C/min) to -35 or -80 degrees C and then cooled rapidly by transfer into liquid nitrogen (LN2). Thawed embryos were cultured for 24 hr after which developmental stage, post-thaw survival (PTS), embryo degeneration rate (EDR), quality grade (QG), and fluorescein diacetate viability grade (VG) were assessed. Overall, PTS and EDR were similar (P greater than 0.05) among the three freezing unit/plunge temperature treatments. Cumulative results of container and cryoprotectant/PT dilution treatments consistently demonstrated greater PTS, QG, and VG ratings and lower EDR values when embryos were frozen in ampoules using glycerol/sucrose dilution. Embryos treated with Me2SO/stepwise dilution were particularly sensitive to freezing damage when stored in plastic straws and plunged into LN2 at -35 degrees C. Study 2 was directed at determining whether Study 1 methods for diluting Me2SO-protected embryos markedly affected PTS rates. Post-thaw culture percentages were no different (P greater than 0.05) for four- to eight-cell Me2SO-treated embryos frozen in ampoules (using the forced-LN2 device), thawed, and diluted either conventionally in reduced concentrations of Me2SO or in the sucrose treatment normally accorded glycerolated embryos.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Eight-cell mouse embryos were frozen in 0.5-ml plastic straws in modified Dulbecco's phosphate buffered saline (PBS) plus 5% steer serum plus either 1.32 M dimethyl sulfoxide (DMSO) or 1.32 M glycerol. Upon thawing, embryos were diluted 1:4 with 0.0, 0.2, 0.6, or 1.0 M sucrose solutions within the straws. Thawing was either in air at ambient temperature or in 8 degrees C or 38 degrees C water. After 48 h of culture, more embryos frozen in DMSO and thawed in 8 degrees C and 37 degrees C water developed to blastocysts (87 and 93%, respectively) than embryos thawed in air (75%; P < 0.05). No significant differences in development were noted among the three thawing regimens when embryos were frozen with glycerol. There was no significant effect of concentration of sucrose during dilution on development of embryos postthaw. With glycerol as the cryoprotectant, damage to zonae pellucidae increased as thawing rates increased, whereas the opposite was observed with DMSO as the cryoprotectant (P < 0.05).  相似文献   

18.
The freezability and survivability of zona-intact and zona-free (hatched) bovine blastocysts obtained by intracytoplasmic sperm injection (ICSI) were assessed. Day 7 or 8 blastocysts were cryopreserved by slow freezing using 1.5 M glycerol and 0.2 M sucrose. Embryos were exposed to solutions in a 2-step procedure at room temperature and frozen in a programmed cell freezer. Blastocysts that re-expanded within 6 h of post-thaw culture were considered viable. The cleavage, morula and blastocyst development rates after ICSI were 52.4 (131/250), 39.7 (52/131), and 24.4% (32/131), respectively. Blastocyst stage embryos were randomly divided into 2 groups. The first group of embryos was frozen with their zonae intact, while the second group was allowed to hatch from their zonae during the additional 18 h culture, after which they were frozen. The data showed that more Group 2 blastocysts (14/16, 87.5%) than Group 1 (12/16; 75.0%; P<0.05) survived, and more zona-free bovine blastocysts frozen with glycerol as the cryoprotective agent (CPA) than zona-intact blastocysts after slow freezing retained their viability.  相似文献   

19.
Two studies were conducted to evaluate the influence of cryoprotectant, cooling rate, container and cryopreservation procedure on the post-thaw viability of sheep embryos. In Study 1, late morula- to blastocyst-stage embryos were exposed to 1 of 10 cryoprotectant (1.5 M, glycerol vs propylene glycol)-plunge temperature treatments. Embryos were placed in glass ampules and cooled at 1 degrees C/min to -5 degrees C, seeded and further cooled at 0.3 degrees C/min to -15, -20, -25, -30 and -35 degrees C before rapid cooling by direct placement in liquid nitrogen (LN(2)). Post-thaw embryo viability was improved (P<0.01) when embryos were cooled to at least -30 degrees C before LN(2) plunging. Although there were no overt differences in embryo viability between cryoprotectant treatments (each resulted in live offspring after embryo transfer), there was a lower (P<0.01) incidence of zona pellucida damage using propylene glycol (4%) compared to glycerol (40%). In Study 2, embryos were equilibrated in 1.5 M propylene glycol or glycerol or a vitrification solution (VS3a). Embryos treated in propylene glycol or glycerol were divided into ampule or one-step((R)) straw treatments, cooled to -6 degrees C at 1 degrees C/min, seeded, cooled at 0.5 degrees C/min to -35 degrees C, held for 15 minutes and then transferred to LN(2). Embryos vitrified in the highly concentrated VS3a (6.5 M glycerol + 6% bovine serum albumin) were transferred from room air to LN(2) vapor, and then stored in LN(2). Propylene glycol- and glycerol-treated embryos in straws experienced lower (P<0.05) degeneration rates (27%) and yielded more (P<0.05) hatched blastocysts (73 and 60%, respectively) at 48 hours of culture and more (P<0.05) trophoblastic outgrowths (67 and 53%, respectively) after 1 week than vitrified embryos (47, 40 and 20%, respectively). In vitro development rate for VS3a-treated embryos was similar (P>0.10) to that of ampule controls, which had fewer (P<0.05) expanded blastocysts compared to similar straw treatments. Live offspring were produced from embryos cryopreserved by each straw treatment (propylene glycol, 3 of 7; glycerol, 1 of 7; VS3a, 2 of 7). In summary, freeze-preservation of sheep embryos was more effective in one-step straws than glass ampules and propylene glycol tended to be the optimum cryoprotectant. Furthermore, these findings demonstrate, for the first time, the biological competence of sheep embryos cryopreserved using the simple and rapid procedure of vitrification.  相似文献   

20.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号