首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
M Shima  Y Seino  S Torikai  M Imai 《Life sciences》1988,43(4):357-363
Using isolated glomeruli and nephron segments obtained from collagenase treated rabbit kidneys, we examined the in vitro degradation of alpha-human atrial natriuretic polypeptide (alpha-hANP). The ANP-degrading activity was measured by the amount of immunoreactive ANP remaining after incubation of about 50 fmoles alpha-hANP with each tissue preparation for 7.5 min. The sequence of degrading activity among isolated nephron segments was as follows: proximal straight tubule greater than proximal convoluted tubule greater than cortical collecting tubule greater than distal convoluted tubule greater than cortical thick ascending limb. A single glomerulus exhibited the degrading activity which was comparable to approximately 50% of the activity of 1 mm proximal convoluted tubule. Phosphoramidon, an inhibitor of endopeptidase, prevented the degradation of ANP in proximal convoluted tubule and glomerulus by 68% and 89%, respectively, but not in cortical thick ascending limb and cortical collecting tubule. From these results, we conclude that the degradation of ANP by endopeptidase occurs mainly in the proximal tubule and glomerulus.  相似文献   

2.
3.
The present study was undertaken to investigate whether or not potassium deficiency influences N-ethylmaleimide (NEM)-sensitive ATPase in the distal nephron segments of the rat. One group of animals was fed a low-K diet, whereas the normal K-group was given the same diet after supplementation with KCl. The nephron segments examined were: the medullary and cortical thick ascending limbs, the distal convoluted tubule, and the cortical, outer and inner medullary collecting ducts. NEM-sensitive ATPase activity in microdissected segments was measured by a fluorometric microassay. The plasma K+ concentration in the low-K group was 3.1 +/- 0.3 mEq/l compared with 4.2 +/- 0.1 mEq/l in the normal-K group. NEM-sensitive ATPase activity in the outer medullary collecting duct of low-K diet animals was significantly greater than in normal-K animals. There was no significant difference in NEM-sensitive ATPase activity between the two groups of animals in the other nephron segments examined. It is suggested that NEM-sensitive H-ATPase activity in the outer medullary collecting duct is modulated by the potassium status of the animal.  相似文献   

4.
Levillain O 《Amino acids》2012,42(4):1237-1252
The kidney plays a key role in arginine metabolism. Arginine production is controlled by argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) which metabolize citrulline and aspartate to arginine and fumarate whereas arginine consumption is dependent on arginine:glycine amidinotransferase (GAT), which mediates creatine and ornithine synthesis. Histological and biochemical techniques have been used to study the distribution and activity of these enzymes in anatomically dissected segments, in isolated fragments of tubules and in whole tissues. ASS and ASL mRNAs and proteins are expressed in the proximal tubule. Within this nephron segment, the proximal convoluted tubule has a higher arginine synthesis capacity than the proximal straight tubules. Furthermore, this arginine-synthesizing portion of the nephron matches perfectly with the site of citrulline reabsorption from the glomerular filtrate. The kidney itself can produce citrulline from methylated arginine, but this capacity is limited. Therefore, intestinal citrulline synthesis is required for renal arginine production. Although the proximal convoluted tubule also expresses a significant amount of GAT, only 10% of renal arginine synthesis is metabolized to guanidinoacetic acid, possibly because GAT has a mitochondrial localization. Kidney arginase (AII) is expressed in the cortical and outer medullary proximal straight tubules and does not degrade significant amounts of newly synthesized arginine. The data presented in this review identify the proximal convoluted tubule as the main site of endogenous arginine biosynthesis.  相似文献   

5.
The kidney is an extremely heterogeneous organ, with morphological, physiological, and metabolic changes occurring from segment to segment along each nephron. To determine the heterogeneity that might exist within discrete anatomical segments of rabbit nephron, we developed a technique for making quantitative enzyme assays in serial samples, about 100 micron long, along identified segments of the nephron. Results for three enzymes in proximal convoluted and straight tubules show that adenylate kinase, an enzyme of high-energy phosphate metabolism, gradually decreases along the S1 and S2 segments of the proximal tubule, with no abrupt changes. Fructose bisphosphatase, a gluconeogenic enzyme, is high along the major portion of the proximal tubule but plummets along the final millimeter of S3. Conversely, phosphofructokinase, a glycolytic enzyme, is very low along the proximal tubule but increases sharply within the final millimeter. These data underscore the biochemical heterogeneity of the nephron, illustrating the enzyme levels may change markedly even within anatomically defined regions. They also suggest the importance of further studies of this type and demonstrate a practical means for such studies.  相似文献   

6.
D Butlen 《FEBS letters》1984,169(2):138-142
Binding of [3H]PK 11195, an isoquinoline carboxamide derivative, was measured in microdissected tubule segments of rat nephron. High specific binding capacities (1.1-1.8 fmol X mm-1) were found in the thick ascending limb of the Henle's loop and in the collecting tubule, whereas specific binding could not be detected in the proximal tubule. In the medullary collecting tubule, the association and dissociation rate constants at 4 degrees C were k1 = 3.0 X 10(6) M-1 X min-1 and k-1 = 0.021 min -1; the ratio k-1/k1 = 7.0 nM was in agreement with the estimated equilibrium dissociation constant (Kd = 2.4 nM). [3H]PK 11195 binding sites from medullary ascending limb and medullary collecting tubule revealed the following sequence of specificity: PK 11195 = Ro 5-4864 much greater than clonazepam, indicating that tubule binding sites might be the peripheral benzodiazepine receptors of the rat kidney.  相似文献   

7.
High affinity Ca2+ -Mg2+ ATPase in the distal tubule of the mouse kidney   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate whether Ca2+ -Mg2+ ATPase in the distal tubule (where calcium transport is active, against a gradient, and hormone dependent) presents some characteristics different from those observed in the proximal tubule, and whether these characteristics are likely to shed light on the respective roles of this enzyme at the two sites of the nephron. The Ca2+ - and Mg2+-dependent ATP hydrolysis was measured in microdissected segments of the distal nephron, the kinetic parameters were determined, and the influence of magnesium upon the sensitivity to calcium was examined. Results were compared with those obtained in the proximal tubule, and in purified membranes as reported by others. In the distal tubule, low concentrations of Mg2+ (less than 10(-7) M) did not influence ATP hydrolysis. At concentrations above 10(-7) M, Mg2+ increased ATP hydrolysis according to Michaelis kinetics (apparent Km = 11.3 +/- 2.4 microM, Vmax = 219 +/- 26 pmol.mm-1.20 min-1). The addition of 1 microM Ca2+ decreased the apparent Km for Mg2+ and the Vmax for Mg2+. Similar results were obtained in the proximal tubule. At low Mg2+ concentrations, Ca2+ also stimulated ATP hydrolysis according to Michaelis kinetics with an apparent Km value for Ca2+ of 0.18 +/- 0.06 and 0.10 +/- 0.03 microM Ca2+ (ns) and a Vmax of 101 +/- 12 and 89 +/- 9 pmol.mm-1.20 min-1 (ns) in the distal and proximal tubules, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Norepinephrine stimulates renal tubular sodium reabsorption, probably through an alpha 1-adrenoceptor-mediated mechanism. Although the distribution of alpha 1-adrenoceptors in the kidney has been studied with autoradiography, the precise location of these receptors in isolated nephron segments is unclear. Using a microassay we determined the specific binding of [125I]iodoarylazidoprazosin ([125I]prazosin), a high specific radioactivity analog of the selective alpha 1-antagonist prazosin, to microdissected glomeruli and tubule segments. Specific binding of [125I]prazosin (3 nM) in the proximal convoluted tubule was time- and concentration-dependent, saturable, and reversible. In this segment the apparent KD by association and dissociation rate constants of [125I]prazosin binding was 0.47 nM, and the maximum receptor density was approximately 0.19 fmol/mm, or 720 fmol/mg protein. Binding specificity was verified in competition studies with excess (3 microM) unlabeled prazosin and probes for alpha 2- (yohimbine), beta- (propranolol), dopamine1- (SCH23390), and dopamine2- (S-sulpiride) receptors. [125I]Prazosin binding was inhibited significantly only by unlabeled prazosin. Mapping of prazosin binding along the nephron revealed that the highest density was in the proximal convoluted tubule, followed by the proximal straight tubule. Lesser binding was found in the thick ascending limb and in the distal convoluted tubule, whereas in the cortical and outer medullary collecting duct and in glomeruli, binding was not significantly different from zero.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

10.
To determine the possible intrarenal site of action of an endogenous ouabain-like natriuretic factor, we searched for the presence of NaK-ATPase highly sensitive to ouabain in the kidney, an organ previously reported to display a low sensitivity to ouabain. For this purpose, the sensitivity of NaK-ATPase to ouabain was determined at the level of single, well defined segments of nephron microdissected from rabbit kidney. Results indicated that NaK-ATPase activity is 10- to 30-fold more sensitive to ouabain in the collecting tubule, where final adjustments of sodium excretion take place, than in more proximal segments of the nephron. [3H]Ouabain binding experiments confirmed this finding as the affinity for ouabain increases from the proximal tubule to the collecting tubule. These results suggest that endogenous natriuretic factor may control sodium transport in the collecting tubule preferentially.  相似文献   

11.
Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.  相似文献   

12.
Rabbit proximal nephron segments were microperfused in vitro to determine whether active contraluminal uptake of serine occurs in the renal proximal tubule during bath-to-lumen transport (influx) of the L- and D-isomers in the convoluted (pars convoluta) and straight (pars recta) segments. It is known that several amino acids are actively reabsorbed in the proximal nephron by a mechanism involving co-transport with sodium at the luminal membrane. There is some evidence that certain amino acids may also be accumulated across the contraluminal membrane by an energy-dependent mechanism, indicating that net reabsorption is the result of two oppositely directed active transport processes. During in vitro microperfusion of rabbit proximal nephron segments in this study, inward movement of L- and D-serine occurred in a bath-to-cell direction against a concentration gradient in the range 305-2735:1, indicating active uptake at the contraluminal membrane. The concentration gradients were maintained during influx of both isomers of serine in the proximal tubule. L-Serine accumulation by tubular cells was similar in the pars convoluta and recta, and significantly greater than that of D-serine, which was the same in both regions of the proximal tubule. The data support the conclusion that renal handling of serine involves active contraluminal uptake of the L- and D-isomers in both regions of the proximal tubule, and suggest that contraluminal events play an important role in renal handling of amino acids.  相似文献   

13.
The effect of neuropeptide Y (NPY) on cAMP accumulation in various segments of the rabbit nephron was examined. NPY inhibited parathyroid hormone-stimulated cAMP accumulation in the proximal convoluted tubule in a concentration-dependent manner. NPY also inhibited forskolin-stimulated cAMP production in this segment of the nephron. In contrast, NPY had no effect on parathyroid hormone or forskolin-stimulated cAMP accumulation in the proximal straight tubule. Similarly, NPY had no effect on forskolin-stimulated cAMP levels along the rest of the nephron. These results are consistent with previous studies which have localized NPY receptors to the proximal convoluted tubule, and suggest that NPY via its effects on cAMP metabolism may play a role in proximal tubule transport.  相似文献   

14.
Summary To determine whether kidney membrane fractions contain an extramitochondrial anion-stimulated ATPase, we compared the pharmacological and kinetic properties of HCO3-ATPase activities in mitochondrial and microsomal fractions prepared from rabbit kidney cortex and outer medulla. The results indicated that this activity differed markedly in each type of fraction. Microsomal HCO3-ATPase was less sensitive than mitochondrial ATPase to azide, oligomycin, DCCD and thiocyanate, but was more sensitive to filipin and displayed different dependency towards ATP, magnesium and pH. Microsomal ATPase activity was stimulated by sulfite much more strongly than by bicarbonate, whereas mitochondrial activity was stimulated by both these anions to a similar extent. These results demonstrate the presence of an extramitochondrial HCO3-ATPase in kidney membrane fractions. HCO3-ATPase was also measured in single microdissected segments of the rabbit nephron using a radiochemical microassay previously developed for tubular Na, K-ATPase activity. An enzyme with the pharmacological and kinetic properties of the microsomal enzyme was detected in both proximal tubule, distal convoluted tubule and collecting duct, but the thick ascending limb was devoid of any detectable activity. Long-term DOCA administration markedly increased HCO3-ATPase activity in the distal convoluted and collecting tubule. The insensitivity of microsomal HCO3-ATPase to vanadate indicates that it belongs to the F0–F1 class of ATPases, and might therefore be involved in proton transport. This hypothesis is also supported by the localization of tubular HCO3-ATPase activity at the sites of urinary acidification.  相似文献   

15.
Quantitative immunogold localization of Na, K-ATPase along rat nephron.   总被引:1,自引:0,他引:1  
Ultrastructural localization of Na, K-ATPase alpha-subunit along rat nephron segments was investigated quantitatively by immunogold electron microscopy on LR-White ultrathin sections using affinity-purified antibody against alpha-subunit of the enzyme. Ultrathin sections were incubated with the antibody at a saturation level and the number of gold particles bound per micron of the plasma membrane (particle density) of the tubular epithelial cells from the proximal tubule to the collecting duct was determined. In all the tubular epithelial cells, gold particles were located exclusively on the basolateral surface, and no significant binding of gold particles to the apical surface was observed. Distribution of gold particles on the basolateral membranes was quite heterogeneous; lateral membranes and infolded basal membranes were highly labeled, whereas the basal membranes which are in direct contact with the basal lamina were scarcely labeled. The average particle density on the basal surface was highest in the distal straight tubule cells (11.4 units), very high in the distal convoluted tubule cells (9.8 units), intermediate in the proximal tubule cells (3.3 units), in the connecting tubule cells (4.3 units), and in the principal cells of the collecting duct (5.6-3.8 units), low in the thin limb of Henle's loop (1.0 unit), and at the control level in the intercalated cells in the connecting and collecting duct. The relative number of gold particles/mm nephron segment and the relative number of gold particles in the various nephron segments were calculated using quantitative morphological data. The estimated distribution profile of the former was in good agreement with the Na, K-ATPase activity profile in rat nephron, which was determined biochemically with a microenzymatic method.  相似文献   

16.
Primary cultures of rabbit-kidney epithelial cells derived from purified proximal tubules were maintained without fibroblast overgrowth in a hormone-supplemented serum-free medium (Medium RK-1). A hormone- deletion study indicated that the primary cultures derived from purified rabbit proximal tubules required all of the three supplements in Medium RK-1 (insulin, transferrin, and hydrocortisone) for optimal growth but did not grow in response to EGF and T3. In contrast, the epithelial cells in primary cultures derived from an unpurified preparation of rabbit kidney tubules and glomeruli grew in response to EGF and T3, as well as insulin, transferrin, and hydrocortisone. These observations suggest that kidney epithelial cells derived from different segments of the nephron grow differently in response to hormones and growth factors. Differentiated functions of the primary cultures derived from proximal tubules were examined. Multicellular domes were observed, indicative of transepithelial solute transport by the monolayers. The proximal tubule cultures also accumulated alpha- methylglucoside (alpha-MG) against a concentration gradient. However, little or no alpha-MG accumulation was observed in the absence of Na+. Metabolic inhibitor studies also indicated that alpha-MG uptake by the primaries is an energy-dependent process, and depends upon the activity of the Na+/K+ ATPase. Phlorizin at 0.1 mM significantly inhibited 1 mM alpha-MG uptake whereas 0.1 mM phloretin did not have a significant inhibitory effect. Similar observations have been made concerning the Na+-dependent sugar-transport system located on the lumenal side of the proximal tubule, whereas the Na+-independent sugar transporter on the peritubular side is more sensitive to inhibition by phloretin than phlorizin. The cultures also exhibited PTH-sensitive cyclic AMP synthesis and brush-border enzymes typical of proximal cells. However, the activities of the enzymes leucine aminopeptidase, alkaline phosphatase, and gamma-glutamyl-transpeptidase were lower in the cultures than in purified proximal-tubule preparations from which they are derived.  相似文献   

17.
Collectrin/tmem27 encodes a transmembrane protein that plays a critical role in amino-acid transport. Originally described as being expressed only in collecting ducts, it has subsequently also been shown to also be expressed in the S1 segment of the proximal tubule of mammalian metanephric nephrons. In this report we describe the expression of collectrin in the simple embryonic kidney of amphibians, the pronephros. Each pronephros contains a single large nephron with a proximo-distal segmentation very similar to that of mammalian metanephric nephrons. Analysis of collectrin expression in pronephroi at a variety of embryonic stages indicates that this gene is expressed at very high levels throughout the pronephric system, including proximal and distal segments and the Wolffian duct. Expression in the pronephros commences at Xenopus embryonic stage 28 which corresponds to when epithelialization begins within the pronephric mesenchyme. Like the Na+K+ATPase/atp1a1, another highly expressed pronephric marker, collectrin is also expressed in the cloaca but not in the cloacal derived posterior segment of the Wolffian duct, the rectal diverticulum. Unlike the Na+K+ATPase, which is expressed at lower levels in proximal portions of the pronephric nephron, expression of collectrin is even throughout all of the pronephric epithelia. This expression domain extends far beyond that shown to express amino-acid transporters and indicates collectrin may function in facilitating additional transport processes. Its high level of expression and broad distribution make it an excellent marker with which to examine pronephric kidney development.  相似文献   

18.
The proximal tubule of the nephron is subdivided into three structurally and functionally distinct segments, which can be differentiated with the help of special methods. With the aim of producing selective markers for these three portions of the proximal tubule, we raised monoclonal antibodies against the brush border membranes of the rat kidney. Immunohistochemistry was carried out with eleven different monoclonal antibodies to sections of rat kidney and other tissues at the light- and electron-microscopical level. These monoclonal antibodies mainly detect antigens located on the brush border of the proximal tubule, and they allow a distinction between its three segments. However, some antibodies also recognize other portions of the nephron, or even the glomerulus or stromal elements. Sites recognized by the antibodies are not limited to the kidney, but staining is observed on the intestinal brush border, the intralobular ducts of the pancreas, the bile canaliculi of the liver and on the macrophage clusters of the spleen. These antibodies are interesting reagents which can be applied to study biochemical differences between brush border membranes. In addition, they recognize antigenically related sites in other organs with reabsorptive or secretory tasks.  相似文献   

19.
The present study deals with the morphology and ultrastruclure of the nephron in the mesonephros of the toad, Bufo bufo (Linnaeus, 1758). Based on serial sections in paraffin, Araldite and Epon, the position of the different segments of the nephron within the kidney tissue was determined, and a nephron subsequently reconstructed. The nephron consists of the following parts: Malpighian corpuscle, neck segment, proximal tubule, intermediate segment, early distal tubule, late distal tubule and collecting tubule. The late distal tubule was subdivided into three morphologically different sections. The total number of nephrons in the toad mesonephros was estimated at 6000 units. The length of the segments in the reconstructed nephron was calculated. The cytology of the epithelial cells constituting the segments was described using transmission and scanning electron microscopy. Heterocellularity was found in the late distal tubule section I and III and in the collecting tubule. The proportional distribution and number of intercalated (mitochondria-rich) cells in the late distal tubule and collecting tubule was calculated. Only one morphological type of intercalated cell could be distinguished. Late distal tubules were removed from fresh Bufo kidneys for preliminary studies of the intercalated cells with Nomarski optics.  相似文献   

20.
Recently an inhibitory effect of atrial natriuretic factor (ANF) on the adenylate cyclase system has been reported in vascular tissue. In seeking similar affects in renal tissue, we studied the effect of ANF on cyclic AMP levels in single nephron segments and in glomeruli from the rat. Individual nephron segments or glomeruli were incubated in the presence of a phosphodiesterase inhibitor, with or without parathyroid hormone (PTH) or arginine vasopressin (AVP) and varying concentrations of ANF at 37 degrees C for 2 min. The capacity for alpha 2-adrenoceptor inhibition of adenylate cyclase was demonstrated in the proximal convoluted tubule, cortical collecting tubule and in glomeruli. Nevertheless, ANF could not inhibit cAMP formation in any of these nephron segments nor in the glomerulus. Thus, unlike the vasculature, ANF has no inhibitory effect on cAMP formation in these renal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号