首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[125I]Monoiodinated vasoactive intestinal peptide (125I-VIP) was cross-linked with human colonic adenocarcinoma cells (HT29 cells) grown as a monolayer using dithiobis(succinimidylpropionate) as cross-linking reagent. The cross-linked polypeptides were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A major polypeptide of Mr = 67 000 was characterized and it behaved like a high-affinity binding site for VIP according to the following data. The concentration of native VIP (0.5 nM) giving half-maximum inhibition of 125I-VIP covalent cross-linking with this polypeptide was very similar to that giving half-maximum displacement of 125I-VIP on HT 29 cells (0.6 nM). Glucagon or insulin was unable to inhibit the labelling of the Mr-67 000 component. In our experimental conditions neither specific 125I-VIP binding nor covalent labelling was observed with monolayers of Madin Darby canine kidney epithelial cells (MDCK cells) or African green monkey kidney fibroblasts (Vero cells) while the Mr-67 000 polypeptide was also characterized with human rectal adenocarcinoma cells (HRT 18 cells), known to possess the VIP receptor. Preincubation of HT 29 cells with native VIP at 37 degrees C, before 125I-VIP binding and subsequent cross-linking reaction, decreased the labelling of the Mr-67 000 polypeptide up to 80%. Assuming one molecule of 125I-VIP cross-linked per polypeptide, we have characterized, for the first time, a major polypeptide of Mr = 64 000, which belongs to the high-affinity VIP binding site of an intestinal human cell line.  相似文献   

2.
Vasoactive intestinal peptide (VIP) stimulated in a dose-dependent manner the accumulation of cAMP in human melanoma-derived cell line IGR39. The maximal effect (about 100 times the basal level) was observed with 10 nM VIP. Half-maximum cAMP production was obtained at 0.78 nM VIP. VIP-related peptides were also potent in stimulating the cAMP production in IGR39 cells. The order of potency was VIP much greater than peptide histidine-methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin greater than glucagon. Using the same conditions, IGR37 cells, a metastasic counterpart of IGR39 cells, displayed a weak stimulation of cAMP production. After exposure of IGR39 cells to 10 nM VIP, the cAMP response to a new stimulation by VIP was strongly reduced. This desensitization of IGR39 cells to VIP was rapid (t1/2 less than 2 min) and homologous. Preincubation of IGR39 cells in the presence of native VIP induced disappearance of the VIP-binding sites at the cell surface. This phenomenon was dependent on time and VIP concentration. Maximum effect (loss of 80% of binding capacity) was obtained after exposure of the cells at 37 degrees C with a VIP concentration of 1 microM. The t1/2 of maximum disappearance was less than 2 min and the concentration of VIP giving half-maximum decrease in binding of mono[125I]iodinated VIP (125I-VIP) was 8 nM. This phenomenon was also reversible since 85% of the VIP-binding capacity could be restored in less than 1 h by incubating IGR39 cells in a VIP-free medium. The IGR39 cell line should be a useful model for further study of the structure and function of the human VIP receptor.  相似文献   

3.
The time course of internalization of radioiodinated vasoactive intestinal peptide (VIP) in HT29 cells was obtained using the technique of acetic acid removal of cell-surface-bound peptide. Even after 10 min incubation at 37 degrees C, 125I-VIP, initially bound on the HT29 cell surface, was compartmentalized within the cells. During the same time, degraded radioactive material was released by cells in the incubation medium. Localization of internalized 125I-VIP was investigated using two different subcellular fractionation techniques. 10 min after the onset of internalization, 125I-VIP labelling was found in intermediate structures and 10 min later the bulk of the radioactivity was detected in a low-density fraction containing very large lysosomes with a multivesicular aspect. The lysosomotropic agent NH4Cl appeared to inhibit 125I-VIP internalization, degradation and appearance of radiolabelled peptide in the large lysosomes in a time-dependent manner. Moreover, the effect of NH4Cl resulted in an accumulation of radioactive material in fractions containing microsomal structures. On the other hand, bacitracin, together with methylamine, highly enhanced 125I-VIP labelling in a membrane fraction, suggesting that these agents possibly act on a cell surface component of HT29 cells. These results support the conclusion that in HT29 cells, prelysosomal structures and large secondary lysosomes are probably part of the intracellular pathway of internalized VIP.  相似文献   

4.
The human colon adenocarcinoma cell line HT-29 in culture exhibits a cyclic AMP production system highly sensitive to vasoactive intestinal peptide (VIP), making HT-29 cells a unique cultured cell system for studying the mechanism of VIP action [Laburthe, Rousset, Boissard, Chevalier, Zweibaum & Rosselin (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2772-2775]. The quantitative characteristics of VIP receptors in HT-29 cells and their structural requirement and molecular size were studied. 125I-labeled VIP bound in a time-dependent manner to HT-29 cell homogenates. At equilibrium (60 min incubation at 30 degrees C), unlabelled VIP in the 0.01-10 nM concentration range competed with 125I-VIP for binding to cell homogenates. Scatchard analysis of binding data gave a straight line, indicating that VIP bound to a single population of sites with a KD of 0.12 +/- 0.02 nM and a capacity of 120 +/- 9 fmol/mg of protein. The structural requirement of these receptors was studied with peptides structurally related to VIP, either natural or synthetic. Several peptides inhibited 125I-VIP binding to HT-29 cell homogenates with the following order of potency, which is typical of the human VIP receptor: VIP (IC50 = 0.1 nM) greater than VIP-(2-28)-peptide (IC50 = 13 nM) greater than human growth hormone releasing factor (IC50 = 56 nM) greater than peptide histidine isoleucine amide (IC50 = 80 nM) greater than secretin (IC50 greater than 10 000 nM). To characterize the molecular component(s) of the VIP receptor in HT-29 cells, 125I-VIP was covalently bound to cell homogenates by using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulphate/polyacrylamide-gel autoradiographic studies of affinity-labelled cell homogenates revealed two major bands, corresponding to 125I-VIP-protein complexes of Mr 66 000 and 16 000. The labelling of the Mr-66 000 component was specific, since it was abolished by native VIP, whereas that of the Mr-16 000 component was not. Densitometric scanning of autoradiographs indicated that the labelling of the Mr-66 000 complex was inhibited by low VIP concentrations in the 0.1-10 nM range (IC50 = 0.6 nM), but was unaffected by 1 microM-glucagon or octapeptide of cholecystokinin. It was also decreased by VIP-(2-28)-peptide with a potency 1% that of VIP. Assuming that one molecule of 125I-VIP bound per molecule of protein, one protein of Mr 63 000 was identified as a component of the VIP receptor in HT-29 cells.  相似文献   

5.
N-Hydroxysuccinimidyl 4-azidobenzoate, a u.v.-sensitive heterobifunctional reagent, was used to synthesize photoreactive derivatives of the vasoactive intestinal peptide (VIP). Products of the reaction were purified by reverse-phase h.p.l.c. Three 4-azidobenzoyl-VIP (4-AB-VIP) derivatives were able to compete with monoiodinated 125I-VIP with an apparent KD of 2.5, 6.3 and 12.5 nM compared with 0.6 nM for native VIP. H.p.l.c.-purified mono[125I]iodinated VIP was used to synthesize 4-AB-125I-VIP derivatives. They were used to photoaffinity-label the VIP-binding site of HT29-D4 cells, a clone derived from the human colonic adenocarcinoma cell line HT29. Only one polypeptide, of Mr 70,000 +/- 5000 (mean +/- S.D.) was specifically labelled. The Mr of the component thus characterized was slightly higher than that of the major species (Mr 67,000) labelled after cross-linking experiments using 125I-VIP, conventional homobifunctional reagents and HT29 cells. Nevertheless, the specificity and extent of glycosylation of these two components were identical. These new photosensitive VIP derivatives should be useful tools with which to investigate further VIP-receptor structure and metabolism.  相似文献   

6.
Using mono[125I]iodinated vasoactive intestinal peptide (125I-VIP), a very high number of specific binding sites for VIP were identified at the surface of the human melanoma cell line IGR39. The Scatchard analysis of competitive displacement experiments between native VIP and 125I-VIP was consistent with the existence of two classes of VIP-binding sites. IGR39 cells possess 0.54 x 10(6) high-affinity sites with a dissociation constant (Kd) of 0.66 nM and 1.3 x 10(6) sites of moderate affinity with a Kd of 4.7 nM. Pharmacological studies indicated that the order of potency in inhibiting 125I-VIP binding of the VIP/secretin family peptides was VIP much greater than peptide histidine methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin. Glucagon has no effect on the binding of the labelled peptide. By means of photoaffinity labelling a polypeptide of Mr 63,000 was characterized. The labelling of this species was completely abolished by native VIP. The order of potency of VIP-related peptides in inhibiting 125I-VIP cross-linking to its receptor was the same as in the competition experiments. The glycoprotein nature of the VIP-binding sites of IGR39 cells has been investigated by affinity chromatography on wheat-germ-agglutinin-Sepharose.  相似文献   

7.
Viable human T lymphoblasts derived from the "Molt 4b" cell line have been shown to possess functional plasma membrane receptors for vasoactive intestinal polypeptide (VIP). Specific binding of 125I-VIP to these lymphoblasts is rapid, reversible and linearly dependent on the number of cells present. Analysis of binding at 17 degrees C reveals a single class of high affinity binding sites over the concentration range of 10(-7) to 10(-11) M VIP (KD = 7.3 +/- 1.3 nM). The Bmax of 0.24 +/- 0.07 nM extrapolates to 15 000 +/- 4000 sites/cell. The binding of 125I-VIP to T lymphoblasts is highly specific; secretin and glucagon, peptides of similar molecular weight which show sequence homology with VIP, are unable to competitively inhibit binding of 125I-VIP to Molt 4b lymphoblasts. VIP activates adenylate cyclase in membrane preparations from Molt 4b lymphoblasts and increases cAMP in intact cells. Half maximal activation in both membrane preparations and intact cells occurs at 5 nM VIP. This demonstration of a functional receptor for VIP suggests that the Molt 4b lymphoblastic cell line may be a useful model system in which to study neuropeptide modulation of T lymphocyte function.  相似文献   

8.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   

9.
The specific binding of vasoactive intestinal peptide (VIP) to murine lymphocytes was investigated. CD4 T cells from mesenteric lymph nodes (MLN) bound more 125I-VIP than did unseparated MLN lymphocytes at 37 degrees C, but not at 4 degrees C. The differences between the amount of 125I-VIP bound by the CD4 T cells and unseparated MLN lymphocytes at 37 degrees C depended upon a difference in the amount of the ligand that was internalized by the cells. The rate of insertion of unoccupied VIP receptors from the cytoplasm into the cell membrane (370 receptors/cell/min), the rate constants for internalization of ligand occupied VIP receptors (0.55 min-1) and unoccupied VIP receptors (0.11 min-1), and the rate constant for the elimination of internalized VIP (0.07 min-1) by CD4 T cells were evaluated. These results provide new understanding of the behaviour of VIP receptors on lymphocytes and indicate a mechanism by which CD4 T lymphocytes can homologously regulate their surface expression of VIP receptors in the presence of ambient VIP.  相似文献   

10.
We have prepared villous cells from the jejunum of the rat small intestine and studied the effects of divalent cations and bacitracin on the binding and internalization of VIP. Villous epithelial cells (4 x 10(6) cells/ml) were suspended in a Hepes-NaCl buffer with 1.0% BSA, (pH 7.4) and the cells were incubated for varying periods of time with 125I-VIP at 24 degrees C. Specific binding of radiolabeled VIP was maximal within 10 min (10%) and slowly declined to 9.0 percent after 30 min. In the presence of 1.0 mg/ml bacitracin, however, maximal specific binding of VIP was only 2.7 percent (P less than or equal to 0.001). The addition of CA2+ or Mg2+ to the buffer significantly decreased binding of VIP in a concentration dependent manner. At 8.0, 4.0, 2.0 and 1.0 mM Ca2+, binding of 125I-VIP decreased by 70, 60, 40 and 25 percent, whereas in the presence of the same concentrations of Mg2+ binding was decreased to 50, 38, 25 and 10 percent (P less than or equal to 0.01). To determine if epithelial cells internalize VIP, we bound 125I-VIP to villous cells and then differentiated surface-bound and internalized radioactivity by treating with trypsin (150 micrograms/ml). Surface bound radioligand was the same at both 24 and 4 degrees C (5.3%), while internalized 125I-VIP was 4.0% at 24 degrees C compared to only 1.0% at 4 degrees C (P less than or equal to 0.001). At 24 and 4 degrees C, both Ca2+ (4.0 mM) and Mg2+ (8.0 mM) decreased surface bound radioligand by 60 percent (P less than or equal to 0.01) and lowered internalized radioactivity. These data demonstrate that (1) bacitracin decreases the binding of VIP to small intestinal epithelial cells, (2) both Ca2+ and Mg2+ affect the binding of VIP to its surface receptor and (3) VIP is internalized into epithelial cells.  相似文献   

11.
This study describes functional characteristics of receptors for vasoactive intestinal peptide (VIP) on human Ewing's sarcoma WE-68 cells. These characteristics include 125I-VIP binding capacity, cellular cAMP generation, glycogen hydrolysis, and pharmacological specificity. Binding studies with 125I-VIP showed specific, saturable, binding sites for VIP in WE-68 cells. Scatchard analysis revealed the presence of a single class of high-affinity binding sites that exhibited a dissociation constant (Kd) of 90 pM and a maximal binding capacity (Bmax) of 24 fmol/mg of protein. VIP and VIP-related peptides competed for 125I-VIP binding in the following order of potency: human (h) VIP greater than human peptide with N-terminal histidine and C-terminal methionine (PHM) greater than chicken secretin much greater than porcine secretin. Glucagon and the C-terminal fragments VIP[10-28] and VIP[16-28] and the VIP analogue (D-Phe2)VIP did not inhibit 125I-VIP binding. Addition of hVIP to WE-68 cells provoked marked stimulation of cAMP accumulation, hVIP stimulated increases in cAMP content were rapid, concentration-dependent, and potentiated by 3-isobutyl-l-methylxanthine (IBMX). Half-maximal stimulation (EC50) occurred at 150 nM hVIP. The ability of hVIP and analogues to stimulate cAMP generation paralleled their potencies in displacing 125I-VIP binding. (D-Phe2)VIP, VIP[10-28], VIP[16-28], and (p-Cl-D-Phe6, Leu17)VIP, a putative VIP receptor antagonist, affected neither basal cAMP levels nor hVIP-induced cAMP accumulation. WE-68 cell responses to hVIP were desensitized by prior exposure to hVIP. Desensitization to hVIP did not modify the cAMP response to beta-adrenergic stimulation, and beta-adrenergic agonist desensitization did not modify responses to hVIP. hVIP also induced a time- and concentration-dependent hydrolysis of 3H-glycogen newly formed from 3H-glucose in WE-68 cultures. hVIP maximally decreased 3H-glycogen content by 36% with an EC50 value of about 8 nM. The order of potency of structurally related peptides of hVIP for stimulation of glycogenolysis correlated with their order of potency for inhibition of 125I-VIP binding. IBMX potentiated the glycogenolytic action of hVIP and PHM. The simultaneous presence of the calcium channel antagonist verapamil or the calcium ionophore A 23187 did not influence the glycogenolytic and cAMP stimulatory effects of hVIP. Collectively, these data indicate that Ewing's sarcoma (WE-68) cells are endowed with genuine VIP receptors which are coupled to the formation of cAMP that probably serves a second messenger role in stimulating glycogen hydrolysis in these cells in response to VIP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Vasoactive intestinal polypeptide (VIP), an octacosapeptide isolated from porcine duodenum and thought to have neuromodulator function in several functional systems (gastrointestinal tract, brain, lung, genital tract, heart), was recently detected in human neutrophils by radioimmunoassay. Subsequent studies demonstrated a VIP-mediated increase in lymphocyte adenylate cyclase. In this paper, VIP binding studies are presented using viable nonadherent human lymphocytes. Binding of 125I-VIP to nylon wool column-purified lymphocytes is specific, time dependent, rapid, and reversible. Bound radioactivity varies linearly with the number of cells used and is displaceable by non-iodinated VIP in a dose-dependent manner with complete displacement between 1 pM and 50 nM. Scatchard analysis of competition experiments demonstrates one class of specific binding sites with a KD of 0.47 +/- 0.23 nM and a Bmax of 24.9 +/- 7.0 pM. This Bmax represents 1700 binding sites/cell. secretin, gastric inhibitory polypeptide, and glucagon did not effectively compete with 125I-VIP for binding sites. This is the first demonstration of VIP receptors in a purified population of human lymphocytes; the data suggest that VIP may modulate lymphocyte function.  相似文献   

13.
HT29-D4, a clone of the human colonic adenocarcinoma cell line (HT29), possesses at its cell surface specific binding sites for the vasoactive intestinal peptide (VIP) (KD = 0.5 nM). Their molecular weight was previously estimated to 117 kDa and 64 kDa. This clone underwent functional and structural differentiation when grown in a glucose-free galactose-containing medium. The [125I]VIP binding capacity of cells grown in this medium gradually declined while the cell density increased and reached a value close to zero when cell monolayer was able to form hemicysts. At this time, cells presented numerous tight junctions and desmosomes and a well organized brush border. Binding capacity could be recovered when the post-confluent monolayers were previously disaggregated with EDTA. Neither the affinity for VIP nor the molecular weight of the [125I]VIP cross-linked polypeptides were modified in these cells compared to cells grown in glucose-containing medium. However, surface receptor number of differentiated cells was twice that of undifferentiated cells. Leakproof differentiated cell monolayers grown on permeable substratum produced cAMP in response to VIP only when the peptide was present in the lower chamber of the culture wells. Taking these data altogether, we conclude that the localization of functional VIP receptors is restricted to the basolateral domain in differentiated post-confluent HT29-D4 cells.  相似文献   

14.
By the use of combined in vitro radioreceptor binding and autoradiographic techniques, we analyzed the pharmacological properties and the anatomical localization of the vasoactive intestinal polypeptide (VIP) receptor in rat superior mesenteric artery and in medium and small mesenteric artery branches. 125I-VIP was bound by sections of rat superior mesenteric artery in a manner consistent with the labeling of specific VIP receptors, with Kd and Bmax values of 0.23 nM and 0.71 pmol/mg protein respectively. Inhibition of 125I-VIP binding with VIP and related peptides gives the following rank order of potency: VIP greater than peptide histidine methionine greater than secretin. Light microscope autoradiography reveals specific VIP binding sites within the medial layer of superior mesenteric artery and its branches. Medium and small sized vessels are richer in 125I-VIP binding sites than the larger ones.  相似文献   

15.
Moody TW  Mantey SA  Fuselier JA  Coy DH  Jensen RT 《Peptides》2007,28(9):1883-1890
The effects of vasoactive intestinal peptide-camptothecin (VIP-CPT) conjugates were investigated on breast cancer cells and cells transfected with VIP receptors (R). (Ala(2,8,9,19,24.25.27), Nle(17), Lys(28))VIP, (A-NL-K)VIP, was synthesized and Lys(28) was coupled to a linker, N-methyl-amino-ethyl-glycine, L2, which formed a carbamate bond with CPT. The resulting (A-NL-K)VIP-L2-CPT was cytotoxic for MCF7 breast cancer cells, which have VPAC(1)-R, with IC(50) values of 380 and 90 nM using the MTT and clonogenic assays, respectively. (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT inhibited specific binding of (125)I-VIP to 3T3 cells transfected with VPAC(1)-R with IC(50) values of 1.9, 56 and 126 nM, respectively. In contrast, (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT inhibited specific binding of (125)I-Ro25-1553 to 3T3 cells transfected with VPAC(2)-R with IC(50) values of 3.9, 3162 and 2690 nM, respectively. (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT caused increased cAMP after addition to MCF7 cells. (125)I-(A-NL-K)VIP-L2-CPT was internalized by MCF7 cells at 37 degrees C but not 4 degrees C. These results indicate that (A-NL-K)VIP-L2-CPT is a VPAC(1)-R agonist which is cytotoxic for breast cancer cells.  相似文献   

16.
Abstract: Vasoactive intestinal polypeptide (VIP) is a neuropeptide that causes neurone excitation in the brain cortex. VIP receptors were studied in subcellular fractions isolated from rat cerebral cortex. The receptor binding of 125I-VIP was greatest in the synaptosomal fraction at membrane protein concentrations of 50–100 μg/ml, a temperature of 37°C, and a pH from 7.4 to 7.7. Under these conditions the concomitant proteolytic degradation of 125I-VIP was approximately 10% after 60 min of incubation. The binding of 60 pmoI/L 125I-VIP reached steady-state after 60 min and was maintained up to 240 min. At steady-state, the receptor-bound 125I-VIP was displaced by unlabelled VIP with half-maximal inhibition (IC50) at a concentration of approximately 3 nmol/L. The binding of 125I-VIP in the concentration range of 10 pmol/L to 6 nmol/L was superimposable on the VIP displacement curve. The Scatchard plot was curvilinear with upward concavity, which can be interpreted to represent two classes of receptors with KD of 2.5 and 125 nmol/L, one class of receptors with negative cooperative interactions, or heterogeneity of the 125I- VIP preparation. The total amount of receptors was 9.5 pmol/mg of membrane protein. Secretin displaced receptor-bound 125I-VIP with an IC50 of 0.3 μmol/L, whereas glucagon snowed no inhibition up to 1 μmol/L. The dissociation of receptor-bound 125I-VIP was biexponential with rate constants (k2) of 4.1 – 10?3 and 0.18 min?1 corresponding to half-times of approximately 170 and 4 min, respectively. The size of the two components was dependent on the duration of the 125I-VIP association period. Initially, both components increased; at steady-state, the rapid component declined, whereas the slow component increased to approximately 70% after 120 min. The association rate constants (k1) were estimated from the initial velocities as 106 and 4. 106 L. mol?1. min?1, and a calculation of the KD as k2/k1 gave values of 4.1 and 45 nmol/L, respectively. In conclusion, the presence of receptors for VIP on synaptosomes from the cerebral cortex supports the role of VIP as a neurotransmitter in the brain. The receptor binding was heterogeneous, suggesting the presence of two classes of receptors. The binding kinetics showed a time-dependent transition of VIP receptors from a low- to a high-affinity state, which may be interpreted as desensitisation of synapses to the action of VIP.  相似文献   

17.
The effects of various phorbol esters on the interaction of human cells with recombinant human tumor necrosis factor-alpha (rTNF-alpha) was investigated. Preexposure of several different types of cells with only biologically active tumor promoter, i.e. 4 beta-phorbol 12-myristate 13-acetate (PMA), inhibited the specific binding of rTNF-alpha to its receptor. The reduction in specific binding of TNF-alpha was observed only by PMA but not with several other phorbol esters tested. 1-oleoyl-2-acetylglycerol, which is an analogue of the natural protein kinase C activator, diacylglycerol, was active in down-regulating TNF-alpha receptors but only at 1000 times concentration than PMA. Scatchard analysis of the binding data on U-937 cells revealed that PMA caused a decrease in high affinity cell surface receptor number (approximately 8300 versus approximately 2500 binding sites/cell) without any significant change in the dissociation constant (0.38 nM versus 0.32 nM). This decrease in receptor number is dependent on temperature, the time of exposure, and dose of PMA. Greater than 95% of the specific binding of 125I-TNF-alpha could be abolished within 10 min by preexposure of cells to 10 nM PMA at 37 degrees C. The down-regulation of receptors by PMA occurred only at 37 degrees C but not at 4 degrees C, suggesting a probable internalization of the receptors. The specific binding of TNF-alpha to detergent-solubilized cell extracts remained unchanged after exposure of cells to PMA. The rates of dissociation of TNF-alpha from the cell surface and the rate of internalization was not significantly affected by PMA, but the rate of disappearance from cell interior and its appearance into the medium was slightly enhanced by PMA. PMA did not alter the rate of degradation of the TNF-alpha nor cause the shedding of receptors into the medium. Approximately 70% of TNF-alpha cell surface receptors could be regenerated within 16 h after PMA removal. These results suggest the involvement of PMA-activated protein kinase C in down-regulation and redistribution of TNF-alpha receptors.  相似文献   

18.
The presence of vasoactive intestinal peptide (VIP) binding sites and the adenylate cyclase activity in response to VIP were examined in the human term placenta. Slices were used in order to preserve the physicochemical environment and the structural integrity of this heterogeneous organ. 125I-VIP binding to placental slices was saturable. The steady state was reached after 90 min at 37 degrees C and was maintained up to 3 h. Unlabeled VIP was able to compete in a dose-dependent manner with an IC50 value of 5.2 +/- 1.3 x 10(-10) M. Autoradiography and histological analysis showed that VIP binding sites were essentially located on fetal vascularization, especially arteries of stem villi. VIP produced a stimulatory effect on cAMP synthesis at a concentration as low as 10(-10) M. The dose-response curve was monophasic with an ED50 value of 2.9 +/- 1.6 x 10(-9) M. The specificity of the VIP effect was tested with peptides structurally related to VIP such as glucagon, secretin, gastric inhibitory polypeptide and human growth-hormone releasing factor. Only secretin at high concentrations (greater than 10(-6) M) increased cAMP production. Leu-enkephalin or insulin were ineffective. The presence of both VIP binding sites on fetal vascularization and VIP-induced adenylate cyclase activation would seem to suggest a regulatory role of the peptide on fetoplacental blood flow.  相似文献   

19.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors.  相似文献   

20.
To identify the molecular components of the vasoactive intestinal peptide (VIP) binding sites in the liver, 125I-labelled VIP was covalently linked to liver membranes by using the cleavable cross-linker dithiobis(succinimidylpropionate). Purified rat liver plasma membranes were incubated with 125I-VIP, washed and treated with 1 mM-cross-linker. Polyacrylamide-gel electrophoresis of membrane proteins followed by autoradiography revealed a major 125I-VIP-protein complex of Mr 51 000. A minor Mr 89 000 complex was also observed. An identical pattern of protein labelling was obtained using crude membranes from rat liver. Labelling of the Mr 51 000 and 89 000 species was specific in that it could be abolished by native VIP, but was unaffected by 1 microM-glucagon and cholecystokinin octapeptide. Densitometric scanning of autoradiographs indicated that the labelling of the two species was abolished by similar low VIP concentrations (0.1-100 nM). It was also reduced by two VIP agonists, peptide histidine isoleucine amide and secretin, with a potency that is 1/7 and 1/200 that of native VIP, respectively. The guanine nucleotide GTP in the concentration range between 10(-7) and 10(-3) M reduces the labelling of the major Mr 51 000 protein and that of the minor Mr 89 000 protein, but with a slightly higher potency. Assuming one molecule of 125I-VIP was bound per molecule of protein, a major Mr 48 000 protein and a minor Mr 86 000 protein were identified as components of the high-affinity VIP binding sites in liver. This contrasts markedly with the pattern of labelling of rat intestinal epithelial membranes, where a Mr 73 000 protein was identified as a high-affinity VIP receptor and a Mr 33 000 protein as a low-affinity VIP binding site [Laburthe, Bréant & Rouyer-Fessard (1984) Eur. J. Biochem. 139, 181-187], suggesting structural differences between VIP binding sites in rat liver and intestinal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号