首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A correlation between polyomavirus-induced oncogenesis and viral persistence on the one hand and/or prolonged genome replication potential on the other was established with respect to their respective organ distributions. Prolonged replication potential is defined as the capacity of a genome to replicate in a given organ from the time of infection up to the onset of oncogenesis. This conclusion was derived following intraperitoneal infection of BALB/c mice with wild-type strain A2. Viral genomes were used as parameters of persistence and replication and were detected by Southern blotting and PCR analysis. The major tumor target organs (mammary gland, skin, and bone), which have not been previously analyzed for persistence, were compared with other, non-tumor-prone organs (kidney, liver, lung, spleen, and salivary gland). A progressive loss of viral genomes was observed in all tissues as a function of time postinfection; however, genomes were shown to persist through 20 weeks postinfection in the mammary glands, skin, and bones to an extent similar to that in the previously described kidneys (D. J. McCance, J. Virol. 39:958-962, 1981; W. P. Rowe, J. W. Hartley, J. D. Estes, and R. J. Huebner, Natl. Cancer Inst. Monogr. 4:189-209, 1960). Thus, tumors arise among organs that sustain a persistent infection, but not all such organs develop tumors (e.g., the kidney). The capacity of organs to support de novo replication at various ages, including the age reached when the first tumors are detected, was also determined using a 3-day infection period for ages between 0 and 7 weeks. For all organs tested, a higher level of genomes was observed in organs of mice infected as neonates than in those infected after the age of 3 weeks. However, marked organ-specific differences were seen in the degree and timing of loss of replication. In particular, viral genome replication, although reduced, was maintained in the mammary glands, skin, and bones of adult animals, in contrast to the kidneys. We conclude that organ-specific oncogenesis correlates with two organ-specific parameters: persistence of viral genomes and prolonged viral genome replication potential. This may reflect a requirement for continued viral genome replication and/or gene expression for tumorigenesis. In turn, these parameters may be linked to the tissue-specific continued capacity for cellular division.  相似文献   

2.
3.
4.
5.
Mammary tumorigenesis in feral Mus cervicolor popaeus.   总被引:6,自引:5,他引:1       下载免费PDF全文
C Escot  E Hogg    R Callahan 《Journal of virology》1986,58(2):619-625
A pedigreed breeding population of feral Mus cervicolor popaeus with a high incidence of mammary tumors, arising between 6 and 14 months of age, is described. These mice were chronically infected with a type B retrovirus which is distantly related to the mouse mammary tumor virus (MMTV) of inbred strains of Mus musculus. MMTV-induced mammary tumors in inbred mice frequently (80%) contained an insertion of the viral genome into the int-1 or int-2 loci of the tumor cellular genome. These two cellular genetic loci were also altered by viral insertion in 11 of 20 M. cervicolor popaeus mammary tumor cellular DNAs tested. Results of our study of mammary tumorigenesis in feral mice demonstrate that viral-induced rearrangement and activation of the int loci are not limited to the genetic background of inbred mice selected for highly infectious MMTV and a high incidence of mammary tumors.  相似文献   

6.
The involvement of the mouse mammary tumor virus (MTV) in spontaneous and hormone-induced mammary tumors in low-mammary-tumor mouse strains was studied by comparing the amounts of MTV RNA and MTV DNA sequences in mammary tumors and other tissues of mice with an without hormonal treatments. The following results were obtained. (i) Mammary tumors which appeared in C3H mice as a result of an infection with MTV contained more MTV DNA compared with noninfected organs; these mammary tumors also contained more MTV RNA than was present in lactating mammary gland cells. (ii) Hormonal stimulation by administration of excessive amounts of prolactin via hypophyseal isografts in C3Hf and O20 mice resulted in an increased expression of MTV RNA in the mammary glands. This elevated level of MTV RNA expression was, however, not maintained in the hormone-induced mammary tumors. (iii) Spontaneous mammary tumors in BALB/c mice contained similar levels of MTV DNA and MTV RNA sequences as were found in other cells of these animals.  相似文献   

7.
To understand the molecular mechanisms by which the endogenous murine mammary tumor virus (MuMTV) proviruses are expressed and produce late-occurring mammary tumors in C3Hf mice, we analyzed, by the use of restriction enzymes and the Southern transfer procedure, genomic DNA from normal organs of mammary tumor-bearing and tumor-free mice and from 12 late-occurring C3Hf mammary tumors. We found, by using the restriction enzymes EcoRI and HindIII, that in addition to the preexisting endogenous MuMTV proviruses, new MuMTV-specific proviral DNA was integrated into new sites in the host genome in all 12 of the tumors that we examined. PstI digests of C3Hf tumor DNA revealed that the new proviral DNA found in C3Hf tumors was of endogenous origin. Moreover, the respective sizes of at least one of the new DNA fragments generated by EcoRI or HindIII digestion were the same in at least 50% of the C3Hf tumors analyzed, suggesting that the integration site of this new proviral DNA could be at the same location in the host genome of these tumors. Our results may imply that mammary tumorigenesis in C3Hf mice results from activation of cellular oncogenes by an MuMTV proviral DNA promoter. Specific hypomethylation of MuMTV proviral DNA was detected in the mammary tumors and spleens of C3Hf tumor-bearing mice. Our results indicated that most, if not all, of the hypomethylated MuMTV proviral DNA sequences were derived from the endogenous MuMTV provirus located at the MTV-1 locus, a locus responsible for the production of MuMTV antigens and increased incidence of mammary carcinoma in C3Hf mice. In spleens of non-tumor-bearing mice of ages 3, 6, 9, and 12 months, there was progressive hypomethylation of proviral DNA with increasing age, suggesting a possible correlation between demethylation of MuMTV proviral DNA in the spleens of C3Hf mice and the expression of endogenous MuMTV.  相似文献   

8.
Steady-state levels of murine mammary tumor virus (MuMTV) RNA were quantitated during mammary tumorigenesis in BALB/c mice by molecular hybridization with a representative MuMTV complementary DNA (cDNA) probe. Hyperplastic alveolar nodule (HAN) lines are preneoplastic mammary lesions that were induced in BALB/c mice by hormones alone or in combination with 7,12-dimethylbenz(a)anthracene and give rise to mammary tumors. The hormone-induced HAN lines D1 and D2 contained detectable amounts of hybridizable MuMTV sequences. MuMTV RNA sequences were also observed in five of the six transplanted BALB/c mammary tumors that were examined. Similar levels of hybridizable MuMTV RNA were observed between the D1 or D2 HAN line and mammary tumors derived from each HAN line. The D2 HAN line as well as D2, C4, and CD8 mammary tumors accumulated RNA that was apparently homologous to most of the MuMTV genome. Thermal denaturation of hybrids indicated extensive sequence homology between the MuMTV cDNA and hybridizable RNA in the BALB/c HAN lines and mammary tumors. A low level of type C viral RNA was observed in the BALB/c HAN lines and most mammary tumors by molecular hybridization with a cDNA to Moloney murine leukemia virus. These data demonstrate that MuMTV sequences are frequently expressed in hormone-induced BALB/c HAN lines and mammary tumors derived from HAN lines or ductal hyperplasias induced in BALB/c mice by hormones and/or a chemical carcinogen. The transition from the preneoplastic to the neoplastic state in BALB/c mice does not appear to be due to a change in the steady-state levels of MuMTV RNA since the hormone-induced HAN lines and mammary tumors had similar levels of hybridizable MuMTV RNA.  相似文献   

9.
The exogenous Moloney leukemia virus (M-MuLV) was inserted into the germ line of mice by exposing embryos to virus at different stages of embryogenesis. Mice derived from exposed embryos were mosaics with respect to integrated virus. Nine new substrains, designated Mov-5 to Mov-13, were derived, each of which carries a single M-MuLV genome at a different chromosomal position in its germ line. Four substrains, Mov-1 to Mov-4, were derived previously. Restriction enzyme analyses demonstrated that, with the exception of Mov-4 and Mov-6 mice, no major rearrangements or deletions have occurred in the integrated proviral genomes. Infectious virus is not activated in the majority of substrains (Mov-4 to Mov-8 and Mov-10 to Mov-12), whereas the other mice develop viremia. A detailed comparison between Mov-1 and Mov-13 mice demonstrated that the time of virus activation is different. Mov-13 mice activate infectious virus during embryogenesis, leading to a distinct pattern of virus expression in all tissues of the adult, but the viral genome in Mov-1 mice is activated only during the first two weeks after birth, leading to virus expression predominantly in lymphatic organs. Together with previous observations, at least four different phenotypes of virus expression—that is, early virus activation during embryogenesis, virus activation after birth, virus activation late in life and no expression of infectious virus at all—can be distinguished among the 13 substrains. Our results suggest that the chromosomal region at which a viral genome is integrated influences its expression during development and differentiation.  相似文献   

10.
Proviral sequences complementary to the C3H mouse mammary tumor virus RNA genome are present in the DNA of early occurring mammary tumors of C3H/HeN mice and are absent from apparently normal C3H/HeN tissues; these sequences are non-germ line transmitted in C3H/HeN mice and have been termed tumor-associated sequences; (W. Drohan et al., J. Virol. 21:986-995, 1977). We report here that tumor-associated sequences are present in the DNA of spontaneous mammary tumors that occur early in the life of several inbred, high-tumor-incidence mouse strains but are absent in mammary tumors that occur later in life in low- and moderate-tumor-incidence strains. These sequences are also absent in apparently normal organs tested from numerous laboratory mouse strains, feral mice, Mus musculus subspecies, and other Mus species. Sequences represented in tumor-associated sequence RNA, however, are present as endogenous provirus in GR mice (at approximately four copies per haploid genome) and in two of five substrains of C3H mice tested (at approximately one copy per haploid genome). The two substrains of C3H mice positive for endogenous tumor-associated sequence provirus were recently (circa 1930) separated from the negative substrains of C3H mice. The results may be explained by the unlikely chance segregation of proviral sequences or by the recent integration of viral genes (within the last few decades). Whereas radioactively labeled mouse mammary tumor virus 60-70S RNA or complementary DNA detected mouse mammary tumor virus-related proviral information in all laboratory mouse strains, feral mice, subspecies of M. musculus, and other species of Mus, the use of tumor-associated sequence RNA clearly revealed the genetic diversity that may exist between different colonies or substrains of "inbred" laboratory mice commonly used in cancer research.  相似文献   

11.
12.
Endogenous mouse mammary tumor virus genomes are amplified and located in novel cell DNA sequences in many mouse T-cell lymphomas. Transplanted tumors recovered from the same mouse strain and shown to be of independent origin by chromosomal analysis, by the presence of JH immunoglobulin gene rearrangements, or by the integration patterns of exogenous Moloney MuLV genomes frequently showed similar patterns of novel mouse mammary tumor virus-containing cell DNA fragments. This process of amplification and relocation can occur within a limited number of cell generations and in C57BL/6 mice does not lead to the synthesis of mature virus-encoded proteins. In some instances, amplified mouse mammary tumor virus genomes contained novel restriction cleavage sites in the gag-pol region. The restricted time course of occurrence, lack of synthesis of mature virion proteins, and apparent site specificity indicate that this process of retrovirus amplification differs significantly from virus replication after exogenous infection.  相似文献   

13.
To determine the role of transforming growth factor-beta (TGF-beta) signaling in mammary development and tumor formation, we previously generated transgenic mice that expressed a dominant-negative form of the TGF-beta type II receptor (DNIIR) under the control of DNA regulatory elements from the metallothionein promoter (MT-DNIIR-28). In this report, we tested the hypothesis that loss of TGF-beta signaling in the mammary gland alters the development of chemically or hormonally induced tumors in mice. Four groups of mice were used in the study: wild-type and MT-DNIIR-28 mice on zinc with pituitary isograft, and wild-type and MT-DNIIR-28 mice on zinc with pituitary isograft treated with the carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). Tumor-free survival over time, tumor growth rate, and tumor pathology were measured. Statistically significant differences in tumor free survival over time or tumor growth rate were not detected in wild-type versus transgenic mice treated with DMBA. In contrast, tumor-free survival was significantly altered in transgenic mice that were treated with the pituitary isograft alone with MT-DNIIR mice developing tumors more quickly. Alterations in the types of tumors that formed in wild-type versus MT-DNIIR DMBA-treated mice were detected. In wild-type mice, tumors with squamous differentiation or bicellular adenomyoepitheliomas were most common. Adenomyoepitheliomas were not detected in transgenic mice. Furthermore, there was reduced staining for alpha smooth muscle actin and keratin 14, markers for myoepithelial cells, in the glandular portion of tumors in transgenic mice. The pathology of tumors induced by pituitary isograft alone was also markedly different in wild-type and transgenic mice. All the tumors classified from wild-type mice demonstrated some form of squamous differentiation, whereas squamous differentiation was not detected in the pituitary-induced transgenic tumors. The results suggest that TGF-beta acts as a tumor suppressor for hormone-induced cancers and that TGF-beta has a role in determining tumor pathology by regulating myoepithelial or squamous differentiation, maintenance, or transformation.  相似文献   

14.
Cadherins comprise a family of cell-cell adhesion proteins critical to the architecture and function of tissues. Expression of family members E-, N-, and P-cadherin is regulated in a spatial and temporal fashion in the developing and adult organism. Using in vivo and in vitro experimental systems, perturbation of cadherin expression by genetic deletion, overexpression, mutant dominant-negative constructs, and, to a lesser degree, expression of an inappropriate cadherin have all been shown to alter embryogenesis, tissue architecture, and cell behavior. Here we studied how expression of an inappropriate cadherin affects the adult mouse mammary gland. Human P-cadherin was expressed in mammary epithelial cells under control of the mouse mammary tumor virus (MMTV) promoter, and the effect on mammary gland behavior was studied. Typically, E-cadherin is expressed by mammary epithelial cells, whereas P-cadherin is found in myoepithelial cells and cap cells of the ductal terminal end bud. However, breast cancers frequently express P-cadherin, even though they are thought to arise from epithelial cells, and it is a marker of poor prognosis. We developed two independent transgenic mouse lines that exhibited high levels of P-cadherin protein expression in the mammary epithelium. P-cadherin was detected in most, but not all, luminal epithelial cells, and was appropriately localized to cell-cell borders. It was detected in the mammary glands of virgin, pregnant, lactating, post-lactation, and aged parous female mice. Despite the robust and widespread expression of an inappropriate cadherin, no effect was observed on mammary gland morphogenesis, architecture, lactation, or involution in transgenic mice compared to wild-type mice. No mammary tumors formed spontaneously in either wild-type or transgenic mice. Moreover, mammary tumors induced by the neu oncogene, which was introduced by a breeding strategy, showed no differences between mice with or without hP-cadherin. Surprisingly, however, none of the tumors expressed hP-cadherin protein. Together, our studies show no apparent effect on adult mammary gland or tumor behavior by inappropriate expression of P-cadherin in normal mammary epithelial cells.  相似文献   

15.
We have used restriction endonucleases which cleave the DNA of mouse mammary tumor virus (MMTV) at one site (Eco RI) and several sites (Pst I, Sac I and Bam HI) to study infection and mammary tumorigenesis in mice. Proviruses acquired during infection of BALB/c mice foster-nursed by virus-producing C3H females can be distinguished from the MMTV proviruses endogenous to uninfected BALB/c mice by the nature of the fragments generated with Pst I and Bam HI. Using this assay, we show that lactating mammary glands as well as mammary tumors from BALB/cfC3H mice have acquired MMTV DNA, and that a minimum of approximately 10% of normal glandular cells can be infected. The new proviruses appear to be linked to cellular DNA of mammary tumors and infected lactating mammary glands within a limited region (0.2 x 10(6) daltons) of the viral DNA; the location of this region, based upon mapping studies with unintegrated MMTV DNA, suggests that the orientation of these proviruses is colinear with linear DNA synthesized in infected cells and thus approximately colinear with the viral RNA. Comparisons of many mammary tumors and studies of lactating mammary glands with a high proportion of independently infected cells indicate that a large number of sites in the cellular genome can accommodate a new provirus; the acquired proviruses are rarely, if ever, found in tandem with each other or with endogenous proviruses. We cannot, however, distinguish between random integration and integration into a large number of preferred sites in the host genome. Since Eco RI and Bam HI cleavage of DNA from each mammary tumor generates a unique set of viral-specific fragments, we propose that the tumors are composed principally of cells derived from a subset of the many infected cells in a mammary gland; this proposal is supported by our finding that Eco RI digestion of DNA from several transplants of a primary tumor yields the pattern characteristic of the primary tumor.  相似文献   

16.
A complementary DNA (cDNA) probe to mouse mammary tumor virus (MMTV) RNA was synthesized using calf thymus DNA oligonucleotides as a random primer. This probe was then used to study the expression of MMTV RNA in cell lines from BALB/c tumors induced in vivo either spontaneously or in response to viral, chemical, or hormonal stimuli. The cDNA had a length of approximately 400 to 500 nucleotides and specifically hybridized to MMTV RNA and BALB/c lactating mammary gland RNA, but not to Moloney leukemia virus RNA. Calf thymus DNA-primed cDNA could protect 50% of iodinated MMTV RNA from S1 nuclease digestion at cDNA-RNA ratios of 1:1 and 90% of labeled viral RNA at ratios of 10:1. Thermal denaturation of MMTV RNA-cDNA hybrids yielded a T(m) of 88.5 degrees C, indicative of a well-base-paired duplex. Screening of mouse mammary tumor cells for MMTV sequences revealed that three out of five lines of BALB/c origin had undetectable levels of viral RNA (相似文献   

17.
18.
The expression of mammary tumor virus (MTV) antigen in the milk and various organs of three non-inbred dd mouse stocks (ddO, ddN and ddY) was examined by the immunodiffusion (ID) and micro-immunodiffusion (micro-ID) tests. The rate of MTV antigen expression in the milk was 100% at the first lactation in ddO (6/6) and ddN mice (10/10), and 23% in ddY mice (3/13). Mammary tumor incidence was 13% (mean tumor age: 12.0 months), 32% (9.6 months) and 10% (11.5 months) in ddO, ddN and ddY mice, respectively, In F1 hybrids between MTV-free BALB/c females and dd males, a high level of MTV antigen was detected by the ID test in the milk of (BALB/c X ddO) F1, however, the levels in (BALB/c X ddN) F1 and (BALB/c X ddY) F1 mice were low at the first lactation and elevated with the advance of lactation number. Mammary tumor incidence had a trend to be higher and earlier in these F1 hybrids than in non-inbred dd stocks. The development of mammary tumors and detection of MTV antigen in F1 hybrids indicate the extrachromosomal transmission of MTV by male dd mice. The micro-ID test has shown that the mammary tumors, mammary glands, male genital organs except for the testis and the salivary gland expressed MTV antigen, with a high frequency of suggesting that secondary male genital organs may play an important role in MTV infection in mice.  相似文献   

19.
Live attenuated vaccines against measles have been developed through adaptation of clinical isolates of measles virus (MV) in various cultured cells. Analyses using recombinant MVs with chimeric genomes between wild-type and Edmonston vaccine strains indicated that viruses possessing the polymerase protein genes of the Edmonston strain exhibited attenuated viral gene expression and growth in cultured cells as well as in mice expressing an MV receptor, signaling lymphocyte activation molecule, regardless of whether the virus genome had the wild-type or vaccine-type promoter sequence. These data demonstrate that the polymerase protein genes of the Edmonston strain contribute to its attenuated phenotype.  相似文献   

20.
Transgenic mice that expressed the superantigen protein encoded in the C3H exogenous mouse mammary tumor virus long terminal repeat deleted their V beta 14+ T cells during the shaping of their immune repertoire and showed no evidence of virus production in their mammary glands after infection by milk-borne C3H exogenous virus. However, they developed mammary gland tumors that had newly integrated copies of C3H exogenous virus, although the latency of tumor formation was much longer than in their nontransgenic littermates that retained their V beta 14+ T cells. After four generations, infectious C3H virus was completely eliminated from the transgenic mouse pedigree. These data support the hypothesis that endogenous mouse mammary tumor proviruses are retained in the genome as protection against exogenous virus infection and subsequent tumorigenesis and show that there may be natural selection against the virus in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号