首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated cytoplasmic ribosomes from Euglena gracilis and characterized the RNA components of these particles. We show here that instead of the four rRNAs (17-19 S, 25-28 S, 5.8 S and 5 S) found in typical eukaryotic ribosomes, Euglena cytoplasmic ribosomes contain 16 RNA components. Three of these Euglena rRNAs are the structural equivalents of the 17-19 S, 5.8 S and 5 S rRNAs of other eukaryotes. However, the equivalent of 25-28 S rRNA is found in Euglena as 13 separate RNA species. We demonstrate that together with 5 S and 5.8 S rRNA, these 13 RNAs are all components of the large ribosomal subunit, while a 19 S RNA is the sole RNA component of the small ribosomal subunit. Two of the 13 pieces of 25-28 S rRNA are not tightly bound to the large ribosomal subunit and are released at low (0 to 0.1 mM) magnesium ion concentrations. We present here the complete primary sequences of each of the 14 RNA components (including 5.8 S rRNA) of Euglena large subunit rRNA. Sequence comparisons and secondary structure modeling indicate that these 14 RNAs exist as a non-covalent network that together must perform the functions attributed to the covalently continuous, high molecular weight, large subunit rRNA from other systems.  相似文献   

2.
Yeast 5.8 S rRNA is released from purified 26 S rRNA when it is dissolved in water or low salt buffer (50 mM KCl, 10mM Tris-HCl, pH 7.5); it is not released from 60 S ribosomal subunits under similar conditions. The 5.8 S RNA component together with 5 S rRNA can be released from subunits or whole ribosomes by brief heat treatment or in 50% formamide; the Tm for the heat dissociation of 5.8 S RNA is 47 degrees C. This Tm is only slightly lower when 5 S rRNA is released first with EDTA treatment prior to heat treatment. No ribosomal proteins are released by the brief heat treatment. A significant portion of the 5.8 S RNA reassociates with the 60 S subunit when suspended in a higher salt buffer (e.g.0.4 m KCl, 25 mM Tris-HCl, pH 7.5, 6 mM magnesium acetate, 5 mM beta-mercaptoethanol). The Tm of this reassociated complex is also 47 degrees C. The results indicate that in yeast ribosomes the 5.8 S-26 S rRNA interaction is stabilized by ribosomal proteins but that the association is sufficiently loose to permit a reversible dissociation of the 5.8 S rRNA molecule.  相似文献   

3.
Secondary cultures of chicken embryo fibroblasts were infected with the Schmidt Ruppin strain of Rous sarcoma virus (RSV). Five days after infection, the medium was replaced at 2-h intervals with phosphate-free Eagle medium containing 50 muCi of [32P]orthophosphate per ml. Virus was collected by centrifugation, and the RNA was extracted and denatured with dimethyl sulfoxide, and the 33S subunit RNA was isolated by sucrose gradient centrifugation. The molecular weight of the RSV subunit RNA was determined by length measurement in the electron microscope, by using bacteriophage MS2 RNA as a length marker. Molecules of between 2.5 and 3.3 mum in length made up over 50% of the subunit RNA preparation. In this paper, we define RSV RNA subunits as that RNA released from the 70S RNA complex by dimethyl sulfoxide treatment, which sediments as a peak at 33S. Assuming the molecular weight of MS2 RNA to be 1.2 times 10-6, we calculate the molecular weight of RSV subunit RNA to be 3.12 times 10-6 plus or minus 0.25 times 10-6.  相似文献   

4.
Ribosomal RNA synthesis in mitochondria of Neurospora crassa   总被引:10,自引:0,他引:10  
Ribosomal RNA synthesis in Neurospora crassa mitochondria has been investigated by continuous labeling with [5-3H]uracil and pulse-chase experiments. A short-lived 32 S mitochondrial RNA was detected, along with two other short-lived components; one slightly larger than large subunit ribosomal RNA, and the other slightly larger than small subunit ribosomal RNA. The experiments give support to the possibility that 32 S RNA is the precursor of large and small subunit ribosomal RNA's. Both mature ribosomal RNA's compete with 32 S RNA in hybridization to mitochondrial DNA. Quantitative results from such hybridization-competition experiments along with measurements of electrophoretic mobility have been used to construct a molecular size model for synthesis of mitochondrial ribosomal RNA's. The large molecular weight precursor (32 S) of both ribosomal RNA's appears to be 2.4 × 106 daltons in size. Maturation to large subunit RNA (1.28 × 106 daltons) is assumed to involve an intermediate ~1.6 × 106 daltons in size, while cleavage to form small subunit RNA (0.72 × 106 daltons) presumably involves a 0.9 × 106 dalton intermediate. In the maturation process ~22% of the precursor molecule is lost. As is the case for ribosomal RNA's, the mitochondrial precursor RNA has a strikingly low G + C content.  相似文献   

5.
Rye embryo ribosomes were dissociated into subunits and the large subunit fraction was treated with formamide. A low molecular weight complex of RNA and protein (RNP) was released. Electrophoresis of the RNP in polyacrylamide gels containing sodium dodecyl sulphate yielded an RNA band and a single protein band. The protein had a molecular weight of approximately 41 000 and the RNA of the complex was shown to be 5S ribosomal RNA. Embryos were germinated in the presence of [32P]orthophosphate and the labelled RNP was isolated from their ribosomes. The RNA component was partially digested with pancreatic A ribonuclease and the parts protected from degradation by the protein were determined by sequence analysis. Although the whole 5S RNA molecule was shielded to some extent, the portion most protected was between nucleotides 68 and 108. This is, therefore, probably the part of plant cytosol 5S RNA which is primarily involved in the interaction with protein in the complex and possibly in the ribosome as well.  相似文献   

6.
Neurospora crassa ribosomes contain a species of ribonucleic acid (RNA) of molecular weight 54,000, similar to 5.8S ribosomal RNA previously described for other eukaryotic organisms. The 5.8S RNA from N. crassa was found to be released by heat treatment at 60 C from 25S ribosomal RNA but not from 18S ribosomal RNA. The base composition of N. crassa 5.8S RNA was similar to that of 5.8S RNA from Saccharomyces cerevisiae, but differed from animal 5.8S RNA. During the course of this study, it was discovered that N. crassa 25S ribosomal RNA had a number of internal cleavages that may exist in vivo.  相似文献   

7.
The thermal dissociation into subunits and low-molecular-weight (LMW) associated RNAs of the aggregate structure of 70S RNA of a murine leukemia sarcoma viral complex was studied. By polyacrylamide-agarose gel electrophoresis, it was found that at low temperature a fraction of the genome was converted into an intermediate population of RNA (Im.P) with an apparent molecular weight of 6.6 times 10-6. At higher temperature, the 70S RNA and the Im.P RNA were successively dissociated into two RNA subunits called "I" and "II" and 70S-associated LMW RNAs. The apparent molecular weight of subunit I was about 5 times 10-6 and that of subunit II was about 3.2 times 10-6. The release of 4S, 5S, 5.5S, and 8S RNAs from 70S RNA at various temperatures was studied by composite polyacrylamide gel electrophoresis. It was found that the nature of hydrogen bonding to the 70S RNA was different for each LMW RNA species. A possible relationship of the association between the subunits and each 70S-associated LMW RNA, based on their T-m values, is discussed.  相似文献   

8.
9.
RNAs on the cell surfaces of two nonleukemic and two leukemic strains of mouse ascites tumor cells were studied by fractionating the RNAs released from the cell surface by gentle pronase treatment after sucrose density gradient centrifugation, by indirect membrane immunofluorescence that used anti-RNA antibody and by cell electrophoresis. RNA was extracted from the cell supernatants of Ehrlich ascites tumor and sarcoma 180 cells (nonleukemic) that had been treated or not treated with pronase (1 microgram/ml, 37 degrees C, 20 min) followed by sucrose density gradient centrifugation. It was clearly demonstrated that the amounts of ribosomal RNA (18S and 28S) released after pronase treatment were approximately 80% greater than that of nonpronase-treated cells. Ehrlich ascites tumor cells that had been treated with actinomycin D (100 micrograms/kg body weight of mouse, 16 h) in vivo released an amount of ribosomal RNA after pronase treatment only 20% greater than the value for untreated cells. Actinomycin D treatment greatly reduced both the cell surface negative charge and the cell surface immunofluorescence when rabbit anti-RNA antibody was used. Under the same experimental conditions with actinomycin D, only ribosomal RNA synthesis showed preferential inhibition, not the syntheses of poly A-containing messenger RNA, 4S or other small-size RNAs. In contrast, L1210 and C1498 cells (leukemic) showed no change in the amounts of ribosomal RNA released after pronase treatment. L1210 cells also showed no change in the surface negative charge after being treated with actinomycin D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The synthesis and stability of low molecular weight RNAs following heat shock in Drosophila melanogaster cell cultures have been examined. When cultures are raised from 25°C to 37°C, the synthesis of tRNA and at least two other low molecular weight RNAs continues at the 25°C rate. 5.8S ribosomal RNA and most of the low molecular weight nuclear RNAs are not synthesized. The synthesis of 5S ribosomal RNA is greatly reduced. A large amount of an RNA of about 135 nucleotides in length accumulates at 37°C. Nucleotide sequence analysis reveals that this RNA is a novel form of 5S RNA with approximately 15 additional nucleotides at its 3′ end.  相似文献   

11.
A ribosomal subunit antiassociation activity has been purified from both the postribosomal supernatant and ribosomal salt-wash protein fractions of rabbit reticulocyte lysates. A majority (greater than 90%) of the activity is associated with a low molecular weight protein of Mr of approximately 25,000. A small but significant level of antiassociation activity (less than 10%) was found to be associated with higher molecular weight protein fractions. The purified 25,000-dalton antiassociation factor interacts with 60 S ribosomal subunits to prevent them from reassociating with 40 S ribosomal subunits. The factor does not seem to interact directly with 40 S subunits nor does it dissociate 80 S monosomes. The properties of this factor are thus similar to the eukaryotic initiation factor 6 isolated from both wheat germ and calf liver extracts.  相似文献   

12.
RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit of the trypanosomatid flagellate Crithidia fasciculata and analyzed by polyacrylamide gel electrophoresis at 4 °C consisted of one species with a molecular weight of 1.3 × 106 (relative to ribosomal RNA from E. coli MRE 600). When extracted with hot phenol (65 °C), the large ribosomal subunit gave rise to two components with molecular weights of 0.72 and 0.56 × 106. On heating for 60 s, followed by rapid cooling, the single cold-phenol-extracted 1.30 × 106-dalton species completely dissociated into two components of molecular weights 0.72 and 0.56 × 106, present in equimolar amounts. When analyzed by polyacrylamide-agarose gel electrophoresis in the presence of SDS, RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit consisted of three components of molecular weights 1.3, 0.72, and 0.56 × 106, present in apparently equimolar amounts. RNA from the small cytoplasmic ribosomal subunit consisted of one species with a molecular weight of 0.84 × 106, independent of extraction or analytical conditions. It is proposed that under high salt and low temperature conditions, the large ribosomal RNA molecule is held together by its secondary structure, and that denaturing extraction or analytical conditions reveal an otherwise “hidden” lesion present in the molecule in vivo.  相似文献   

13.
14.
RNA subunit structure of Mason-Pfizer monkey virus.   总被引:8,自引:7,他引:1       下载免费PDF全文
Mason-Pfizer monkey virus 60-70S RNA has a molecular weight of 8 times 10-6 when analyzed on polyacrylamide gels. Dissociation of 60-70S RNA of Mason-Pfizer monkey virus and murine leukemia virus by heat or formamide (40%) resulted in conversion to identical subunit structures of 2.8 times 10-6 daltons; treatment with lower amounts of formamide revealed a partial dissociation of Mason-Pfizer monkey virus 60-70S RNA released three low-molecular-weight RNA species of 10-5, 3,5 times 10-4, and 2.5 times 10-4.  相似文献   

15.
Staring from low molecular weight RNA obtained from rainbow trout (Salmo gairdnerii) liver, 5S ribosomal RNA (rRNA) was highly purified by successive chromatography on columns of DEAE-Sephadex A50 and Sephadex G100. Products of complete and partial digestions on this RNA with pancreatic ribonuclease (RNase A) [EC 3.1.4.22] and RNase T [EC 3.1.4.8] were isolated and sequenced by conventional and high-performance liquid chromatography (HPLC) procedures. The nucleotide sequence of this RNA thus established was compared with those of five other vertebrae 5S rRNAs, and the rates of base substitution per site per year were found to be nearly constant in these RNAs. The analyses of the partial digests of the trout 5S rRNA revealed several sites susceptible to RNase attack, which could be accounted for by the secondary structure model for eukaryotic 5S rRNAs proposed by Nishikawa and Takemura (1).  相似文献   

16.
The methyltransferase that forms m5C967 in Escherichia coli small subunit ribosomal RNA has been purified, cloned, and characterized. The gene was identified from the N-terminal sequence of the purified enzyme. The gene is a fusion of two open reading frames, fmu and fmv, previously believed to be distinct due to a DNA sequencing error. The gene, here named rsmB, encodes a 429-amino acid protein that has a number of homologues in prokaryotes, Archaea, and eukaryotes. C-Terminal sequencing of the overexpressed and affinity-purified protein by mass spectrometry methods verified the sequence expected for the gene product. The recombinant protein exhibited the same specificity as the previously described native enzyme; that is, it formed only m5C and only at position 967. C1407, which is also m5C in natural 16S RNA, was not methylated. In vitro, the enzyme only recognized free 16S RNA. 30S ribosomal subunits were not a substrate. There was no requirement for added magnesium, suggesting that extensive secondary or tertiary structure in the RNA substrate may not be a requirement for recognition.  相似文献   

17.
The large RNA molecule within each ribosomal subunit is folded in a specific and compact form. The availability of specific 16S RNA sequences on the surface of the small ribosomal subunit has been probed by using complementary oligodeoxynucleotides. The hybridization of 8-15-nucleotide-long oligomers to their RNA complements within the subunit was quantitated by using a nitrocellulose membrane filter binding assay. The probes have been grouped into classes on the basis of sequence-specific binding ability under different conditions of ionic environment, incubation temperature, and subunit activation state [as defined by the ability to bind phenylalanyl-tRNA in response to a poly(uridylic acid) message]. Oligodeoxynucleotides complementary to nucleotides flanking 7-methylguanosine residue 527 and to the 3'-terminal sequence bound 30S subunits regardless of the activation state. Oligodeoxynucleotides that complement 16S ribosomal RNA residues 1-16, 60-70, 685-696, and 1330-1339 and the sequence adjacent to the colicin E3 cleavage site at residue 1502 all bound efficiently only to subunits in an inactivated conformation. Probes complementary to residues 1-11 and 446-455 bound only inactivated subunits, and then with low efficiency. Sequences complementary to nucleotides 6-16, 99-109, 1273-1281, and 1373-1383 bound 30S subunits poorly regardless of the activation state. With one exception, each probe was bound by native or heat-denatured 16S ribosomal RNA (as determined by size-exclusion chromatography). We conclude that complementary oligodeoxynucleotide binding efficiency is a sensitive measure of the availability of specific RNA sequences under easily definable conditions.  相似文献   

18.
A 5-S RNA . protein complex has been isolated from the 50-S ribosomal subunit of an extreme halophile, Halobacterium cutirubrum. The 50-S ribosomal subunit from the extreme halophile requires 3.4 M K+ and 100 mM Mg2+ for stability. However, if the high K+ concentration is maintained but the Mg2+ concentration lowered to 0.3 mM, the 5-S RNA . protein complex is selectively extracted from the subunit. After being purified on an Agarose 0.5-m column the complex had a molecular weight of about 80000 and contained 5-S RNA and two proteins, HL13 and HL19, with molecular weights (by sedimentation equilibrium) of 18700 and 18000, respectively. No ATPase or GTPase activity could be detected in the 5-S RNA . protein complex. The amino acid composition and electrophoretic mobility on polyacrylamide gels indicated both proteins were much more acidic than the equivalent from Escherichia coli or Bacillus stearothermophilus. Partial amino acid sequence data suggest HL13 is homologous to EL18 and HL19 to EL5.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号