首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of bovine retina to synthesize purines de novo is shown for the first time. Amidophosphoribosyl transferase (EC 2.4.2.14), the enzyme controlling the rate of the process, and phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1), the enzyme regulating the intracellular contents of phosphoribosyl pyrophosphate (PRPP), were purified and characterized. The molecular masses of the enzyme subunits are similar to those of the purified enzyme from the liver. The molecular masses of amidophosphoribosyl transferase, PRPP synthetase catalytic subunit, and two PRPP synthetase-associated proteins are 50, 34, 39, and 41 kD, respectively. The apparent Km values of the enzymes and coenzymes are similar to those of the purified enzymes from the liver. For amidophosphoribosyl transferase, the apparent Km for Gln and PRPP are 0.75 +/- 0.05 and 0.66 +/- 0.09 mM, respectively (the corresponding Vmax values are 59 +/- 3 and 136 +/- 12 nmoles PPi/min per mg protein). For PRPP synthetase, the apparent Km for ribose-5-phosphate and ATP are 37.9 +/- 0.5 and 53 +/- 7 microM, respectively (the corresponding Vmax values are 61 +/- 4 and 52 +/- 3 nmoles PRPP/min per mg protein). The sensitivity of the retinal PRPP synthetase to inhibition by ADP and AMP was significantly lower than that of the enzyme from the liver.  相似文献   

2.
The influence of four isolated periods of dietary manipulation upon high intensity exercise capacity was investigated in six healthy male subjects. Subjects consumed their 'normal' (N) diet (45 +/- 2% carbohydrate (CHO), 41 +/- 3% fat, 14 +/- 3% protein) for four days after which they exercised to voluntary exhaustion at a workload equivalent to 100% VO2max. Three further four-day periods of dietary manipulation took place; these were assigned in a randomised manner and each was followed by a high intensity exercise test. The dietary treatments were: a low CHO (3 +/- 1%), high fat (71 +/- 5%), high protein (26 +/- 3%) diet (HFHP); a high CHO (73 +/- 2%), low fat (12 +/- 2%), normal protein (15 +/- 1%) diet (HCLF); and a normal CHO (47 +/- 3%), low fat (27 +/- 2%), high protein (26 +/- 2%) diet (LFHP). Acid-base status and blood lactate concentration were measured on arterialised-venous blood at rest prior to dietary manipulation on each day of the different diets, immediately prior to exercise and at 2, 4, 6, 10 and 15 min post-exercise. Other metabolite concentrations were measured in the blood samples obtained prior to dietary manipulation and immediately prior to exercise. Exercise time to exhaustion after the HFHP diet (179 +/- 63 s) was shorter when compared with the N (210 +/- 65 s; p less than 0.01) and HCLF (219 +/- 69 s; p less than 0.05) diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

4.
The activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), ATP-citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthetase were lower (-25 to -60%) in liver of rats fed during 45 days with a moderate long-chain triglycerides (LCT) content diet (32% of metabolizable energy, ME), than in control rats fed with a low fat diet (LCT, 10% of ME). However, the fall in malic enzyme activity was not significant. In contrast, these activities were higher (+40 to +160%) in rats fed with a diet with a moderate medium-chain triglycerides (MCT) content (32% of ME), than in control rats. Nevertheless, the increase in activity of malic enzyme and ATP-citrate lyase was more important. Contrary to LCTs, MCTs had no inhibitory effect on the activity of enzymes involved in hepatic lipogenesis.  相似文献   

5.
The developmental changes of both pancreatic and intestinal enzymes and the influence of dietary composition on enzyme activities were followed in suckling and weaning rabbits. In addition, whole tract digestibility of nutrients was recorded in response to two dietary energetic sources. Rabbits were fed ad libitum either a low fat and high starch diet (group LF), or a high fat and high fibre diet (group HF) between d 32 and d 42, with both groups receiving a growing finishing diet thereafter. Before weaning (d 32) nutrient digestion was high (>75% for organic matter, protein or fat), and then decreased sharply, except for fat. Between d 32 and d 42, digestion in the HF group was 7.5 and 4.6% lower, respectively, for organic matter and protein, while fibre and fat digestion was higher (+14.0 and +5.0%, respectively). Between d 25 and d 42 of age, pancreatic-specific activities of trypsin and chymotrypsin did not change while those of amylase and lipase increased by 1.5- and 76- fold (P<0.05), respectively. However, total activities and relative activities expressed on a LW basis were increased after weaning as a main consequence of a specific increased organ weight and pancreatic protein content. Relative activities of trypsin and chymotrypsin increased by 63 and 56% (P<0.01) after weaning, respectively. Total activities of pancreatic enzymes measured in the total small intestinal contents increased during the same period, but the range of variations was lower than those measured in the pancreatic gland. Total activities of lipase, trypsin and chymotrypsin measured in the small intestine contents were significantly correlated with pancreas enzyme potentialities. Total small intestine activity of lipase was 58% higher (P<0.001) in HF than in LF group while the other pancreatic and intestinal enzyme activities measured were not influenced by the energetic sources of the diet. Decreased digestibility of organic matter and protein observed with the HF diet could not be related to changes in pancreatic or intestinal enzymatic profiles and may be more dependent on quality of dietary ingredients.  相似文献   

6.
The in vivo capacity of urea nitrogen synthesis (CUNS) during alanine stimulation was measured within the blood amino acid concentration interval 7.3-11.6 mmol/l, where urea synthesis is at maximum and independent of substrate concentration. Three groups of rats were fed for 14 days, either a low protein diet (8%), a normal diet (17%), or a high protein diet (53%). Diet protein modified both CUNS and plasma glucagon concentration. CUNS was 5.86 +/- 2.93, 7.43 +/- 2.16, and 19.31 +/- 4.32 mumol/(min.100 g BW) (mean +/- SD, N = 6), respectively. The corresponding plasma glucagon concentrations after alanine stimulation were 222 +/- 400, 633 +/- 229, and 1700 +/- 627 ng/l, respectively. The in vivo kinetics of urea production is regulated by dietary protein, possibly via glucagon. This implies that the liver plays an active part in adaptation of whole body nitrogen homeostasis to dietary changes.  相似文献   

7.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

8.
The study was undertaken to evaluate the effects of dietary protein sources on lipogenesis and fat deposition in a marine teleost, the European seabass (Dicentrarchus labrax). Four isonitrogenous (crude protein (CP, Nx6.25), 44% DM) and isoenergetic (22-23 kJ/g DM) diets were formulated to contain one of the following as the major protein source: fish meal (FM), one of two soy protein concentrates (SPC) and corn gluten meal (CGM). Apparent digestibility coefficients of the diets and raw ingredients, as well as soluble nitrogen (ammonia and urea) and phosphorus excretion were measured. Growth rates of seabass fed plant protein-based diets were significantly lower than those fed fish meal based diet. The protein utilisation was strongly correlated to the dietary essential amino acids index. Measurements of N excretion (ammonia and urea nitrogen) confirmed these data. Daily fat gain at the whole body level ranged between 1.1 to 1.7 g/kg BW, with the highest values being recorded in fish fed the fish meal based diet. Levels of plasma triglycerides and cholesterol were lower in fish fed soy protein diets than in those fed the diet solely based on fish meal. Soy protein rich diets decreased the activities of selected hepatic lipogenic enzymes (glucose 6-phosphate dehydrogenase, malic enzyme, ATP-citrate lysase, acetylcoenzyme A carboxylase and fatty acid synthetase). Highest lipogenic enzyme activities where found in fish fed the fish meal diet, except for fatty acid synthetase which was increased in seabass fed the corn-gluten meal based diets. Overall data suggest that dietary protein sources affects fat deposition and the lipogenic potential in European seabass.  相似文献   

9.
In this study dietary vitamin A supplementation (25 IU/g diet) was assessed for its effect on hepatic microsomal P450 content and on P450 enzyme-specific drug oxidase activities in rats. Intake of the supplemented diet by male rats over a 15-week period resulted in a fivefold increase in hepatic vitamin A stores over those measured in control liver from rats that received a balanced diet without vitamin A supplementation. Serum retinol was unchanged and there was no evidence of hepatocellular injury in any of the animals. There was a 26% increase in P450 content in vitamin A-supplemented rat liver and regioselective androst-4-ene-3,17-dione (androstenedione) and progesterone hydroxylation revealed changes in several P450 pathways. Thus, androstenedione 16 alpha-hydroxylation (P450 IIC11-mediated) and progesterone 21-hydroxylation (P450 IIC6-mediated) were decreased slightly to 80 and 74% of respective control activities while P450 IIA1/2-dependent androstenedione 7 alpha-hydroxylation was slightly increased. In contrast, the 6 beta-hydroxylations of androstenedione and progesterone were increased to 169 and 152% of control following dietary supplementation. Kinetic analysis of androstenedione 6 beta-hydroxylation revealed an increase in maximal reaction velocity (Vmax 4.00 +/- 0.47 vs 2.20 +/- 0.10 nmol/min/mg protein) but the Km was unchanged, suggesting an increase in enzyme concentration. Consistent with this assertion, immunoquantitation of the steroid 6 beta-hydroxylase, P450 IIIA2, revealed a 158% increase in the microsomal expression of this enzyme (9.8 +/- 2.7 vs 6.2 +/- 1.3 ng/micrograms microsomal protein). From these studies it now seems clear that vitamin A, as a dietary additive in nontoxic doses, has the capacity to alter the activity of hepatic microsomal drug oxidases by modulating the expression of P450 enzymes.  相似文献   

10.
The mitochondrial enzyme N-acetylglutamate synthase (NAGS) produces N-acetylglutamate serving as an allosteric activator of carbamylphosphate synthetase 1, the first enzyme of the urea cycle. Autosomal recessively inherited NAGS deficiency (NAGSD) leads to severe neonatal or late-onset hyperammonemia. To date few patients have been described and the gene involved was described only recently. In this study, another three families affected by NAGSD were analyzed for NAGS gene mutations resulting in the identification of three novel missense mutations (C200R [c.598T > C], S410P [c.1228T > C], A518T [c.1552G > A]). In order to investigate the effects of these three and two additional previously published missense mutations on enzyme activity, the mutated proteins were overexpressed in a bacterial expression system using the NAGS deficient E. coli strain NK5992. All mutated proteins showed a severe decrease in enzyme activity providing evidence for the disease-causing nature of the mutations. In addition, we expressed the full-length NAGS wild type protein including the mitochondrial leading sequence, the mature protein as well as a highly conserved core protein. NAGS activity was detected in all three recombinant proteins but varied regarding activity levels and response to stimulation by l-arginine. In conclusion, overexpression of wild type and mutated NAGS proteins in E. coli provides a suitable tool for functional analysis of NAGS deficiency.  相似文献   

11.
12.
13.
The effect of dietary fat on body composition, whole body lipogenesis, and enzyme activity was measured in rats over the first 16 weeks post-weaning. Rats were fed either a low fat (5% w/w fat) or high fat (20% w/w fat) diet for the first 4 weeks. After this time all rats were fed the low fat diet. The results showed no significant effect of diet on the rate of fat synthesis over the first 8 weeks of the experiment. However, the activities of the enzymes of fatty acid synthesis [glucose 6-phosphate dehydrogenase, malic enzyme, adenosine triphosphate-citrate lyase, acetyl-coenzyme A carboxylase (ACCX), fatty acid synthetase] were dependent on the age and dietary status of the animals. The exact pattern depended on the specific enzyme and the tissue source. No significant differences in pyruvate dehydrogenase (PDH) activity were observed. Mathematical analysis of the enzyme activities suggested that ACCX and PDH were the most likely sites of fat synthesis regulation. In addition, an examination of body composition and overall weight retention showed that the "weight increasing" effect of a high fat diet could be completely reversed by subsequent feeding of a low fat diet. However, the reversal required an additional 12 weeks. Interestingly, at this time the rats switched from a high fat to a low fat diet had a lower body weight and lower body fat content than rats fed a low fat diet throughout the course of the experiment.  相似文献   

14.
1. The metabolic role of hepatic NAD-linked glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) was investigated vis-a-vis glyceride synthesis, glyceride degradation and the maintainence of the NAD redox state. 2. Five-week-old chickens were placed on five dietary regimes: a control group, a group on an increased-carbohydrate-lowered-fat diet, a group on a high-fat-lowered-carbohydrate diet, a starved group and a starved-refed group. In each group the specific activity (mumol/min per g wet wt. of tissue) of hepatic glycerol 3-phosphate dehydrogenase was compared with the activities of the beta-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, glycerol kinase (EC 2.7.1.30) and lactate dehydrogenase (EC 1.1.1.27). 3. During starvation, the activities of glycerol 3-phosphate dehydrogenase, glycerol kinase and lactate dehydrogenase rose significantly. After re-feeding these activities returned to near normal. All three activities rose slightly on the high-fat diet. Lactate dehydrogenase activity rose slightly, whereas those of the other two enzymes fell slightly on the increased-carbohydrate-lowered-fat diet. 4. The activity of the beta-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, a lipid-synthesizing enzyme, contrasted strikingly with the other three enzyme activities. Its activity was slightly elevated on the increased-carbohydrate diet and significantly diminished on the high-fat diet and during starvation. 5. The changes in activity of the chicken liver isoenzyme of glycerol 3-phosphate dehydrogenase in response to dietary stresses suggest that the enzyme has an important metabolic role other than or in addition to glyceride biosynthesis.  相似文献   

15.
The rates of synthesis and degradation of arginosuccinate synthetase in rat liver under various dietary conditions were determined. The relative rate of the enzyme synthesis in the livers of rats fed on 70% casein diet was 4.0 times greater than that for rats fed on 5% casein diet. The rate constants of degradation (Kd of argininosuccinate synthetase were estimated to be 0.15 and 0.16 day-1 under 70% and 5% casein feeding, respectively. When the dietary conditions were changed acutely from 70% to 5% casein diet or vice versa, the rates of the enzyme synthesis decreased or increased, respectively, and the rates of enzyme degradation were also affected. The change from 5% to 70% casein diet caused a transient decrease in the rate of degradation. After the enzyme activity had achieved a new steady-state level, the enzyme degradation proceeded at the normal steady rate. On the other hand, the change from 70% to 5% casein diet caused a transient increase in the rate of degradation. Thus, the only factor regulating the amount of enzyme in rat liver is the rate of enzyme synthesis under the steady-state conditions. However, the rates of both enzyme synthesis and degradation are involved in the regulation of the amount of enzyme during dietary transition.  相似文献   

16.
N-乙酰谷氨酸合成酶催化生成的N-乙酰谷氨酸(NAGS)对于哺乳动物尿素循环第一个酶—氨基甲酰磷酸合成酶I变象异构激活是必需的。N-乙酰谷氨酸合成酶定位于肝脏和小肠线粒体基质中,通过提供N-乙酰谷氨酸调节氨基甲酰磷酸合成酶I的活性来调节尿素合成。我们用RT-PCR方法从宁乡猪肝脏中扩增了N-乙酰谷氨酸合成酶的开发阅读框,并将此基因连接到原核表达载体上,构建了pET-NAGS质粒。将重组质粒转化到Ec.oliBL21(DE3),在IPTG诱导下表达His-NAGS融合蛋白。通过SDS-PAGE,得出NAGS分子量约为40kDa。一步亲和层析纯化后,我们将纯化后的NAGS蛋白注射到新西兰大白兔中制备多克隆抗体。通过免疫组化和免疫印迹测试抗体,结果表明此抗体有较好的抗原性和特异性。据我们所知,这是第一次在大肠杆菌中表达来源于宁乡猪的NAGS。  相似文献   

17.
An antibody against acetoacetyl-CoA synthetase purified from rat liver was raised in rabbits. Utilizing the binding of antibody-antigen complexes to a nitrocellulose membrane, a sensitive enzyme-linked immunosorbent assay was developed to estimate the enzyme concentration in rat tissues. The enzyme concentration (microgram immunoreactive protein/mg protein) in rat liver cytosol was increased about 3-, 1.8- and 7-fold by feeding rats diets containing 5% cholestyramine, 0.2% ML-236B (compactin), and 5% cholestyramine plus 0.2% ML-236B for 4 days, respectively, and decreased about 1.8-fold by fasting the animals or 1.3-fold by feeding them a diet containing 5% cholesterol. Changes in the enzyme activity were almost parallel to those in the enzyme concentration, suggesting the physiological role of this enzyme in cholesterol biosynthesis. Immunoblotting of the hepatic cytosol also confirmed that the increase in enzyme concentration on cholestyramine and/or ML-236B feeding was due to an increase in an enzyme protein the same as the purified enzyme and not the isozymic protein. Among various rat tissues examined, the concentrations of immunologically crossreactive enzyme were higher in lipogenic tissues, such as brain, adipose tissue and liver, than in other tissues. The enzymes in these three tissues were identical in molecular weight determined by gel filtration and immunoblotting.  相似文献   

18.
CR39 is a cholesterol-repressible rat liver cDNA previously isolated by differential hybridization (Clarke, C.F., Tanaka, R.D., Svenson, K., Wamsley, M., Fogelman, A.M., and Edwards, P.A. (1987) Mol. Cell. Biol. 7, 3138-3146). To precisely identify the function of CR39 a fusion protein was constructed that contained the amino-terminal region of the bacterial protein anthranilate synthetase fused to the full length CR39 polypeptide. Affinity purified antisera directed against the fusion protein inactivated rat liver cytosolic prenyltransferase activity in vitro. In addition, affinity purified antisera made to purified chicken prenyltransferase cross-reacted with the fusion protein containing CR39. Rat hepatic prenyltransferase activity and enzyme mass were quantitated in animals fed diets or drugs known to alter endogenous cholesterol biosynthesis. Rats fed a diet supplemented with cholestyramine and mevinolin showed a 3.5-fold increase in activity and a 5.0-fold increase in mass of cytosolic prenyltransferase. A diet supplemented with cholesterol resulted in approximately a 4.0-fold decrease in hepatic enzyme activity and a 10-fold decrease in enzyme mass. Under these same dietary regimens the mass of prenyltransferase in the testes remained unchanged. We conclude that CR39 encodes the prenyltransferase of cholesterol biosynthesis, farnesyl pyrophosphate synthetase. Furthermore, in the liver this enzyme shows coordinate regulation with two other enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase and 3-hydroxy-3-methylglutaryl-CoA synthase, in response to cholesterol feeding and hypocholesterolemic drugs.  相似文献   

19.
Litopenaeus vannamei were reared in close cycle over seven generations and tested for their capacity to digest starch and to metabolise glucose at different stages of the moulting cycle. After acclimation with 42.3% of carbohydrates (HCBH) or 2.3% carbohydrates (LCBH) diets and at high salinity (40 g kg(-1)) or low salinity (15 g kg(-1)), shrimp were sampled and hepatopancreas (HP) were stored. Total soluble protein in HP was affected by the interaction between salinity and moult stages (p<0.05). Specific activity of alpha-amylase ranged from 44 to 241 U mg protein(-1) and a significant interaction between salinity and moult stages was observed (p<0.05), resulting in highest values at stage C for low salinity (mean value 196.4 U mg protein(-1)), and at D0 in high salinity (mean value 175.7 U mg protein(-1)). Specific activity of alpha-glucosidase ranged between 0.09 and 0.63 U mg protein(-1), an interaction between dietary CBH and salinity was observed for the alpha-glucosidase (p<0.05) and highest mean value was found in low salinity-LCBH diet treatment (0.329 U mg protein(-1)). Hexokinase specific activity (range 9-113 mU mg protein(-1)) showed no significant differences when measured at 5 mM glucose (p>0.05). Total hexokinase specific activity (range 17-215 mU mg protein(-1)) showed a significant interaction between dietary CBH and salinity (p<0.05) with highest value (mean value 78.5 mU mg protein(-1)) found in HCBH-high salinity treatment, whereas in the other treatments the activity was not significantly different (mean value 35.93 mU mg protein(-1)). A synergistic effect of dietary CBH, salinity and moult stages over hexokinase IV-like specific activity was also observed (p<0.05). As result of this interaction, the highest value (135.5+/-81 mU mg protein(-1)) was observed in HCBH, high salinity at D0 moult stage. Digestive enzymes activity is enhanced in the presence of high starch diet (HCBH) and hexokinase can be induced at certain moulting stages under the influence of blood glucose level. Perspectives are opened to add more carbohydrates in a growing diet, exemplifying the potential approach for less-polluting feed.  相似文献   

20.
The sucking-weaning transition is characterized by high rates of growth and development and may be a sensitive period during which dietary intake could program metabolism to increase the risk of cardiovascular disease and diabetes in adulthood. Intake of a high fructose (FR) diet is known to induce hypertriglyceridemia and insulin resistance in rats when they are consuming this diet. We examined whether a FR diet fed early in life produces detrimental changes in lipid and glucose metabolism that persist to adulthood. Weanling rats were fed 65% FR (wt/wt), a purified control diet (CNTL) or standard chow (CHOW) for 5 weeks. Beyond 9 weeks of age, all rats were fed CHOW. During FR feeding, plasma triglycerides (TG) were significantly elevated in the FR group (FR = 217 +/- 20; CNTL = 163 +/- 17; chow = 156 +/- 10). At 21 wks of age, TG's were similar in rats fed FR or CNTL versus CHOW at weaning (p > 0.87). Hepatic fatty acid synthase (FAS) activity was elevated in FR and CNTL groups vs. CHOW (65 +/- 7, 72 +/- 6 vs. 48 +/- 4 nmol NADPH/mg protein/min, p < 0.01). There were no differences in indices of glucose homeostasis at 21 weeks of age. Early exposure to a diet high in simple sugars (FR or CNTL) and/or low in fiber during the suckling-weaning transition may contribute to modest dyslipidemia later in life. Together, changes observed in this study may increase the risk of cardiovascular disease in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号