首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastric H,K-ATPase is an active transport protein that is responsible for the maintenance of a large pH gradient across the secretory canaliculus of the mammalian parietal cell. Acid secretion across these epithelial cell membranes is coupled to the potassium-stimulated hydrolysis of ATP catalyzed by H,K-ATPase, but the mechanism of coupling between ion transport and ATP hydrolysis is unknown. In order to investigate the enzymatic mechanism of this coupling, a peptide derived from the ATP binding site of H,K-ATPase has been purified and its amino acid sequence has been determined. The peptide was identified by the incorporation of a fluorescent probe, fluorescein 5'-isothiocyanate (FITC), into the active site before trypsin digestion of the protein. The labeling of the enzyme by FITC was associated with the irreversible inhibition of enzymatic activity, and both the labeling of the tryptic peptide and inhibition of activity were prevented when the reaction was performed in the presence of ATP. At 100% inhibition of activity, 3.5 +/- 1.6 nmol of FITC were incorporated per mg of protein. The amino acid sequence of the active site peptide is His-Val-Leu-Val-Met-Lys-Gly-Ala-Pro-Glu-Gln-Leu-Ser-Ile-Arg, and FITC reacts with the lysine. This sequence is very similar to sequences of fluorescein-labeled peptides from the ATP binding sites of Na,K-ATPase and Ca2+-ATPase, and suggests that the active site structures of these ion transport ATPases are similar.  相似文献   

2.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

3.
Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.  相似文献   

4.
Few experimental models have been used to investigate how proteins fold inside a cell. Using the formation of disulfide bonds as an index of conformational changes during protein folding, we have developed a unique system to determine the intracellular folding pathway of the beta subunit of human chorionic gonadotropin (hCG). Three folding intermediates of the beta subunit were purified from [35S]cysteine-labeled JAR choriocarcinoma cells by immunoprecipitation and by reverse-phase high performance liquid chromatography (HPLC). To identify unformed disulfide bonds, nonreduced folding intermediates were treated with trypsin to liberate non-disulfide-bound, [35S]cysteine-containing peptides from the disulfide-linked peptides. Released peptides were purified by HPLC and identified by amino acid sequencing. The amount of a peptide that was released indicated the extent of disulfide bond formation involving the cysteine in that peptide. Of the six disulfide bonds in hCG-beta, bonds 34-88 and 38-57 form first. The rate-limiting event of folding involves the formation of the S-S bonds between cysteines 23 and 72 and cysteines 9 and 90. Disulfide bond 93-100, the formation of which appears to be necessary for assembly with the alpha subunit of the hCG heterodimer, forms next. Finally, disulfide bond 26-110 forms after assembly with the alpha subunit, suggesting that completion of folding of the COOH terminus in the beta subunit occurs after assembly with the alpha subunit.  相似文献   

5.
An isolation procedure for the reticulocyte heme-controlled alpha subunit of eukaryotic translational initiation factor 2 (eIF-2 alpha) kinase is described which yields different fractions with kinase activity. Each is associated with a different spectrin-related peptide as identified by anti-spectrin monoclonal antibodies. The most abundant of these peptides is the Mr 90,000 species characterized previously (Kudlicki, W., Fullilove, S., Kramer, G., and Hardesty, B. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5332-5336). Association with the spectrin-related peptides appears to account for the heterogeneity of the enzyme during its isolation and for its highly asymmetric structure. Isolated alpha or beta spectrin subunits as well as the separated homogeneous Mr 90,000 peptide cause an increase in the initial rate of eIF-2 alpha phosphorylation that is related to a decrease in Km with little or no effect on Vmax for the phosphorylation reaction. Fractionation of highly purified eIF-2 alpha kinase preparations using affinity chromatography on monoclonal anti-spectrin antibodies has separated eIF-2 alpha kinase activity from the Mr 100,000 phosphopeptide which copurifies with the kinase during all other purification steps. A Mr 95,000 peptide, detectable only by photoaffinity labeling with 8-azido-[alpha 32P]ATP, is shown to be distinct from the Mr 100,000 phosphopeptide and appears to be the catalytic subunit of the eIF-2 alpha kinase.  相似文献   

6.
The complete primary structure of the alpha subunit of protocatechuate 3,4-dioxygenase has been determined by automated Edman degradation and carboxypeptidase digestionof the intact alpha chain and of peptides derived from trypsin (N.A. Kohlmiller and J.B. Howard (1979) J. Biol. Chem. 254, 7302-7308) and Staphylococcus aureus protease digestion, and from hydroxylamine and dilute acid cleavage. The alpha chain was found to consist of 200 residues in the following sequence from the NH2-terminal end: (formula: see text).  相似文献   

7.
A mouse alpha-macroglobulin (AMG), a homologue of human alpha 2-macroglobulin (alpha 2 M), has been purified to homogeneity. In contrast to human and acute-phase rat alpha 2 M which contains subunits of about Mr 190 000, the mouse protein contains two major (Mr 163000 and 35000) and one minor (Mr 185000) subunits. Also unlike human alpha 2 M, which can be broken down into about 85000-dalton subunits when reacted with an endopeptidase, the native AMG is cleaved by trypsin into multiple components (Mr 86000, 63000, 61000 and 33000). Two-dimensional peptide map analysis of these various 125I-labeled subunit components reveals that the 185000- and 163000-dalton components are homologous proteins but only the 185000-dalton protein contains the 35000-dalton component. The 163000-dalton protein is cleaved by trypsin into 86000- and 63000-dalton components, and the 86-kDa component in turn can be broken down into 61000- and 33000-dalton fragments. Since the 35000-dalton component is serologically related to AMG but does not share any tryptic peptides with both the 163000- and 33000-dalton components, it is neither a copurified impurity nor a cleavage product of the major (163000-dalton) subunit. AMG, therefore, is composed of covalently linked subunits of Mr 163000 and 35000, and the 185000-dalton protein may be a variant subunit of AMG. Trypsin treatment of the [14C]methylamine-labeled AMG and alpha 2 M also sequentially generate subunit patterns indistinguishable from those of the unlabeled macroglobulins. The methylamine-sensitive site(s) of AMG is localized in the 63000-dalton peptide, which is rather resistant to trypsin digestion and to staining by Coomassie brillant blue. We conclude from this study that the mouse homologue has a subunit composition and primary structure distinctly different from those of human and rat alpha 2 M.  相似文献   

8.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M K Das  J Lindstrom 《Biochemistry》1991,30(9):2470-2477
Concurrent synthesis of overlapping octameric peptides corresponding to the sequence of the Torpedo acetylcholine receptor (AChR) alpha subunit has been carried out on polypropylene supports functionalized with primary amino groups according to a method developed by M. Geysen [(1987) J. Immunol. Methods 102, 259-274]. The peptides on the solid supports have been used in an enzyme-linked immunosorbent assay. Interactions of the synthetic peptides with antibodies are then detected without removing them from the solid support. By this procedure, epitopes of both antisera and monoclonal antibodies to the Torpedo acetylcholine receptor, its subunits, and synthetic peptide fragments have been mapped. Both rat and rabbit antisera to the alpha subunit show major epitopes spanning the residues 150-165, 338-345, and 355-366 on the Torpedo AChR alpha subunit. Epitopes of monoclonal antibodies to these major epitopes and to others have been rather precisely mapped by using this technique with peptides of varying lengths. The specificity of several of these mAbs are of interest because they have been used in mapping the transmembrane orientation of the AChR alpha-subunit polypeptide chain.  相似文献   

10.
In order to further characterize chemical, physicochemical, and immunochemical properties, as well as structure-function relationships, of the common alpha subunit of human glycoprotein hormones, a tryptic core was prepared from the alpha subunit of human choriogonadotropin. The core was purified in greater than 80% yield using gel permeation and anion-exchange chromatography, and, following reduction and S-carboxymethylation, the constituent peptides were purified by gel permeation and high performance liquid chromatography. The disulfide-bridged peptides comprising the alpha core were identified as residues 1-35 and residues 52-91 by amino acid composition and amino acid carboxyl sequence analyses of the reduced, S-carboxymethylated peptides. The alpha tryptic core contained both N-asparagine carbohydrate moieties, but was devoid of residues 36-51 and the carboxyl-terminal serine at position 92. The small peptides cleaved from residues 36-51, a known potential O-glycosylation region of the alpha subunit, were purified and identified. The tryptic core retained full immunopotency relative to the intact subunit in the binding to polyclonal and monoclonal antibodies directed against the alpha subunit. The region consisting of residues 36-51 is not part of the epitope recognized by these antibodies. With antisera generated to the reduced, S-carboxymethylated subunit, peptide 1-35, but not 52-91, was immunoreactive. This finding is consistent with the known dominant antigenicity of the amino-terminal region in the reduced, S-carboxymethylated molecule. The core exhibited no appreciable interaction with the complementary beta subunit, and, not surprisingly, was unable to compete with intact hormone binding in a radioreceptor assay using rat testicular homogenates. Circular dichroic spectroscopy was used to probe gross features of tertiary structure (240-300 nm) and secondary structure (190-240 nm). The tryptic core and each of the two constituent peptides exhibited spectra above 240 nm that resembled that of the reduced, S-carboxymethylated subunit more than that of the native material, thus suggesting a significant loss of tertiary structure in the core and isolated peptides. This finding is unexpected in consideration of the full retention of immunopotency by the alpha core although consistent with failure of the core to combine with intact complementary beta subunit. The intact subunit as well as the isolated constituent peptides exhibit little if any helicity in aqueous solution. Interestingly, the reduced, S-carboxymethylated chain and peptide 52-91 displayed helicity in 80% trifluoroethanol, a helicogenic solvent.  相似文献   

11.
A synthetic peptide of 18 amino acids corresponding to the inhibitory domain of the heat-stable protein kinase inhibitor was synthesized and shown to inhibit both the C alpha and C beta isoforms of the catalytic (C) subunit of cAMP-dependent protein kinase. Extracts from cells transfected with expression vectors coding for the C alpha or the C beta isoform of the C subunit required 200 nM protein kinase inhibitor peptide for half-maximal inhibition of kinase activity in extracts from these cells. An affinity column was constructed using this synthetic peptide, and the column was incubated with protein extracts from cells overexpressing C alpha or C beta. Elution of the affinity column with arginine allowed single step isolation of purified C alpha and C beta subunits. The C alpha and C beta proteins were enriched 200-400-fold from cellular extracts by this single step of affinity chromatography. No residual inhibitory peptide activity could be detected in the purified protein. The purified C subunit isoforms were used to demonstrate preferential antibody reactivity with the C alpha isoform by Western blot analysis. Furthermore, preliminary characterization showed both isoforms have similar apparent Km values for ATP (4 microM) and for Kemptide (5.6 microM). These results demonstrate that a combination of affinity chromatography employing peptides derived from the heat-stable protein kinase inhibitor protein and the use of cells overexpressing C subunit related proteins may be an effective means for purification and characterization of the C subunit isoforms. Furthermore, this method of purification may be applicable to other kinases which are known to be specifically inhibited by small peptides.  相似文献   

12.
Glucose-6-phosphate isomerase   总被引:2,自引:0,他引:2  
Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site.  相似文献   

13.
14.
Binding of nucleotides to the high-affinity site of the isolated alpha subunit of normal Escherichia coli F1 adenosine triphosphatase (ATPase) results in partial protection against digestion by trypsin [Senda, Kanazawa, Tsuchiya & Futai (1983) Arch. Biochem. Biophys. 220, 398-440]. In contrast, the isolated alpha subunit from the defective ATPase of the E. coli uncA401 mutant (strain AN120) is cleaved by trypsin to peptides of less than 8000 Da in the presence of ADP or ATP (2.5 microM-110 mM). The nucleotide-dependent accessibility of thiol groups of the isolated alpha subunit was also studied. Two out of four thiol groups of the alpha subunit from normal ATPase are labelled by fluorescent maleimides or iodoacetates, but in the presence of ADP or ATP (0.14-1.2 mM), reaction of thiol groups with these labels is almost absent. Mutant alpha subunit, however, is labelled by these reagents at all four thiol groups in the presence or absence of ADP or ATP (1 mM). These results suggest that the mutation in the ATPase of strain AN120 leads either to the loss of the high-affinity nucleotide-binding site or affects transmission of allosteric changes that occur on binding of nucleotide to the isolated alpha subunit.  相似文献   

15.
K Y Xu 《Biochemistry》1989,28(14):5764-5772
Determinations of reaction stoichiometry demonstrate that the covalent incorporation of one molecule of 5'-isothiocyanatofluorescein can inactivate one molecule of sodium and potassium ion activated adenosinetriphosphatase in agreement with earlier determination of this stoichiometry. Several different modified peptides are produced, however, when the modified enzyme is digested with trypsin. One of these peptides has been identified as HLLVMK (thioureidylfluorescein)GAPER by use of a specific immunoadsorbent. The modified lysine is lysine 501 in the amino acid sequence of the alpha polypeptide of (Na+ + K+)-ATPase. This peptide has been previously isolated from such digests [Farley, R. A., Tran, C. M., Carilli, C. T., Hawke, D., & Shively, J. E. (1984) J. Biol. Chem. 259, 9532-9535]. The other specifically modified peptides have been purified and identified by amino acid sequencing. Their sequences identify lysine 480 and lysine 766 from the alpha polypeptide as amino acids modified by 5'-isothiocyanatofluorescein in reactions sensitive to the addition of ATP and responsible for inactivation of the enzyme.  相似文献   

16.
The two forms of pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) present in Escherichia coli have been purified from the same cultures and crystallized. A modified procedure for the purification of type I pyruvate kinase is described. Molecular weight, subunit structure, amino acid composition, NH2-terminal amino acid, maps of tryptic peptides and conditions for crystallization have been determined for the two forms. A comparison of these data shows that the two forms are different proteins, each being a tetramer of identical subunits.  相似文献   

17.
The total amount of bound exchangeable and nonexchangeable adenine nucleotides in Escherichia coli F1-ATPase (BF1) was determined; three exchangeable nucleotides were assessed by equilibrium dialysis in a [14C]ADP-supplemented medium. When BF1 was purified in a medium supplemented with ATP, a stoichiometry of nearly 6 mol of bound nucleotides/mol of enzyme was found; three of the bound nucleotides were ATP and the others ADP. When BF1 was filtered on Sephadex G-50 in a glycerol medium (Garrett, N.E., and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647), bound ADP was rapidly released, in contrast to bound ATP which remained firmly attached to the enzyme. Upon incubation of BF1 with [14C]ADP, the bound ADP rather than the bound ATP was exchanged. Of the three [14C]ADPs which have bound to BF1 by exchange after equilibrium dialysis, one was readily lost by gel filtration on Sephadex G-50; the loss of bound [14C]ADP was markedly reduced by incubation of BF1 with aurovertin, a specific ligand of the beta subunit which is known to increase the affinity of the beta subunit for nucleotides (Issartel, J.-P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). Upon photoirradiation of BF1 with [alpha-32P]2-azido-ADP, only the beta subunit was labeled; concomitantly, bound ADP was released, but the content in bound ATP remained stable. These results suggest that specific sites located on the three beta subunits bind nucleotides in a reversible manner. Consequently, the tightly bound ATP of native BF1 would be located on the alpha subunits.  相似文献   

18.
The catalytic (alpha) subunit of casein kinase II from Drosophila, cloned and expressed in Escherichia coli (Saxena, A., Padmanabha, R., and Glover, C. V. C., (1987) Mol. Cell. Biol. 7, 3409-3417), has been purified and characterized, and the properties have been compared to those of the holoenzyme. The catalytic subunit exhibits protein kinase activity with casein as substrate and is autophosphorylated. The specific activity of the purified subunit is 6% of the activity of the holoenzyme from reticulocytes or from Drosophila. The alpha subunit is a monomer, eluting at Mr = 40,000 upon gel filtration in high salt, but as part of an aggregate in low salt. The alpha subunit has been purified to apparent homogeneity by sequential chromatography on DEAE-cellulose, Mono S, and Mono Q. A single band, Mr = 37,000, is detected by silver staining following polyacrylamide gel electrophoresis. The isolated alpha subunit displays apparent Km values for beta casein, ATP, and GTP similar to those of the holoenzyme. The activity of the alpha subunit is inhibited by heparin with an I50 of 0.1-0.3 micrograms/ml, a value similar to that observed for the holoenzyme; autophosphorylation is also inhibited by heparin. Polylysine has no stimulatory effect on the activity of the catalytic subunit, as measured with casein and by autophosphorylation, but stimulates both activities with the holoenzyme. When physiological substrates for casein kinase II are examined, glycogen synthase and eukaryotic initiation factor 3 (eIF-3) (p120) are phosphorylated by the alpha subunit at a rate equivalent to that of the holoenzyme, while phosphorylation of eIF-3 (p67) is reduced 9-fold and eIF-2 beta is not modified. From these data, it can be concluded that the alpha subunit of casein kinase II is sufficient for catalysis, is autophosphorylated, and can be directly inhibited by heparin, whereas the beta subunit mediates the effects of basic stimulatory compounds and is involved in recognition and/or binding to specific physiological substrates.  相似文献   

19.
In our preceding paper [Ratnam, M., Sargent, P. B., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M., & Lindstrom, J. (1986) Biochemistry (preceding paper in this issue)], we presented results from peptide mapping studies of purified subunits of the Torpedo acetylcholine receptor which suggested that the sequence beta 429-441 is on the cytoplasmic surface of the receptor. Since this finding contradicts earlier theoretical models of the transmembrane structure of the receptor, which placed this sequence of the beta subunit on the extracellular surface, we investigated the location of the corresponding sequence (389-408) and adjacent sequences of the alpha subunit by a more direct approach. We synthesized peptides including the sequences alpha 330-346, alpha 349-364, alpha 360-378, alpha 379-385, and alpha 389-408 and shorter parts of these peptides. These peptides corresponded to a highly immunogenic region, and by using 125I-labeled peptides as antigens, we were able to detect in our library of monoclonal antibodies to alpha subunits between two and six which bound specifically to each of these peptides, except alpha 389-408. We obtained antibodies specific for alpha 389-408 both from antisera against the denatured alpha subunit and from antisera made against the peptide. These antibodies were specific to alpha 389-396. In binding assays, antibodies specific for all of these five peptides bound to receptor-rich membrane vesicles only after permeabilization of the vesicles to permit access of the antibodies to the cytoplasmic surface of the receptors, suggesting that the receptor sequences which bound these antibodies were located on the intracellular side of the membrane. Electron microscopy using colloidal gold to visualize the bound antibodies was used to conclusively demonstrate that all of these sequences are exposed on the cytoplasmic surface of the receptor. These results, along with our previous demonstration that the C-terminal 10 amino acids of each subunit are exposed on the cytoplasmic surface, show that the hydrophobic domain M4 (alpha 409-426), previously predicted from hydropathy profiles to be transmembranous, does not, in fact, cross the membrane. Further, these results show that the putative amphipathic transmembrane domain M5 (alpha 364-399) also does not cross the membrane. Our results thus indicate that the transmembrane topology of a membrane protein cannot be deduced strictly from the hydropathy profile of its primary amino acid sequence. We present a model for the transmembrane orientation of receptor subunit polypeptide chains which is consistent with current data.  相似文献   

20.
The dihydropyridine binding site of the rabbit skeletal muscle calcium channel alpha 1 subunit was identified using tritiated azidopine and nitrendipine as ligands. The purified receptor complex was incubated either with azidopine or nitrenidpine at an alpha 1 subunit to ligand ratio of 1:1. The samples were then irradiated by a 200 W UV lamp. The ligands were only incorporated into the alpha 1 subunit, which was isolated by size exclusion chromatography and digested either by trypsin (azidopine) or endoproteinase Asp-N (nitrendipine). Each digest contained two radioactive peptides, which were isolated and sequenced. The azidopine peptides were identical with amino acids 13-18 (minor peak) and 1428-1437 (major peak) of the primary sequence of the skeletal muscle alpha 1 subunit. The nitrendipine peptides were identical with amino acids 1390-1399 (major peak) and 1410-1420 (minor peak). The sequence from amino acids 1390 to 1437 is identical in the alpha 1 subunits of skeletal, cardiac and smooth muscle and follows directly repeat IVS6. These results indicate that dihydropyridines bind to an area that is located at the putative cytosolic domain of the calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号