首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heart calcium was measured in hamsters and rats following 30 days of drinking (i) tap water, (ii) taurine solution (T) or (iii) a taurine uptake inhibitor (GES). The regimes were duplicated in animals receiving verapamil (V). Heart calcium was reduced in both species by T + V; a comparable effect was obtained with GES alone; T alone had no effect. In the hamster, the GES effect was reversed by GES + V; V alone had no effect. In rats, the separate and combined effects of GES and V on heart calcium were identical. Possible mechanisms and underlying species differences are discussed.  相似文献   

2.
The effect of guanidinoethane sulfonic acid (GES), an inhibitor of taurine uptake, was examined with respect to endogenous amino acids in the hippocampus of the freely moving rabbit. GES increased the extracellular levels of both taurine and phosphoethanolamine (PEA), other amino acids being unaffected. However, long-term oral administration of GES selectively reduced endogenous taurine levels. The effect of GES on PEA appeared to be a consequence of the elevated extracellular taurine as exogenously administered taurine per se increased PEA levels in the extracellular space. The findings are discussed in conjunction with the proposed membrane-stabilizing effects of taurine.  相似文献   

3.
Guanidinoethanesulfonate (GES) is a competitive inhibitor of taurine transport. The ability of GES to deplete taurine content has been compared in three species representing omnivores, carnivores, and herbivores. Rats and mice given drinking water containing 1% GES showed large decreases in taurine concentration in all examined organs within a few days. These species do not metabolize GES. The substance was without effect on guinea pigs, a species that does not depend on diet for taurine, even after 20 days of treatment. However, guinea pigs metabolize a fraction of the GES administered to taurine. Cats responded to GES by increasing their urinary excretion of taurine 10-fold, while simultaneously maintaining normal concentrations in body organs. [1,2-3H]GES given orally to cats was extensively metabolized to radioactive taurine. It therefore appears that the cat and to a lesser extent, the guinea pig, have transamidinase or amidinohydrolase activity for which GES is a substrate. However, this substance rapidly depletes taurine levels in the omnivores studied, and promises to be useful in further investigations on taurine in these species.  相似文献   

4.
Summary Partial depletion of the taurine content in the rat retina was accomplished for up to 22 weeks by introduction of 1.5% guanidinoethanesulfonate (GES) in the drinking water. Taurine levels decreased by 50% after 1 week of GES treatment and by 80% at 16 weeks. Replacement of GES by taurine to the GES-treated rats from week 16 to 22 returned their taurine content to the control value. Whereas addition of taurine (1.5%) to the drinking water of control rats from week 16 to 22 elevated the retinal taurine content to 118% of the control value, the administration of untreated water to GES-treated animals for the 16 to 22 week time period increased the retinal taurine content to only 76% of the control value.The amplitude of the electroretinogram (ERG) b-wave was decreased by 60% after GES-treatment for 16 weeks and maintained this reduced level for up to 22 weeks. Administration of taurine in the drinking water from week 16 to 22 returned the b-wave amplitude to a range not statistically different from the control values whereas the administration of untreated water produced less improvement.After 6 weeks of GES treatment when the retinal taurine content was reduced by 70% and the amplitude of the b-wave was reduced by 50% (extrapolated from Figure 1), phosphorylation of a specific protein with an approximate molecular weight of 20K was increased by 94%. The increased phosphorylation of the ~20K protein observed after GES treatment was reversed when the animals were treated with taurine (1 1/2%) in the drinking water for an additional 6 weeks. There was no change in the phosphorylation of the ~20K protein when animals were treated with taurine for 6 weeks. The data obtained support the theory that taurine may have a regulatory effect on retinal protein phosphorylation.  相似文献   

5.
Administration of the taurine transport inhibitor, guanidinoethane sulfonate (GES) to pregnant rats depleted taurine concentrations to approximately one-half of normal values in the newborn progeny. By 5 days of age taurine concentrations had returned to normal in all organs tested with the exception of the lungs. Longer postnatal exposure to GES significantly depressed tissue taurine levels. Prenatal exposure to GES had no effect on fetal development or the capability of the newborn rat to biosynthesize or transport taurine. Pre- and postnatal exposure to GES produced a degeneration of the photoreceptor layer of the retina similar to that observed in cats fed a taurine deficient diet. The pentylene tetrazole chemoshock threshold in GES-treated pups was greater than that in control pups. These results indicate that prenatal exposure to GES deplete taurine concentrations in the newborn rat. Morphological changes are thereby produced in the retina of rat that are similar to those observed in animals having limited ability to synthesize taurine which are maintained on a taurine-free diet.  相似文献   

6.
N Lake  M de Roode  S Nattel 《Life sciences》1987,40(10):997-1005
Electrocardiograms were monitored in unanesthetized rats during treatment with drinking water containing guanidinoethyl sulfonate (GES), an inhibitor of taurine transport, which depleted cardiac taurine content. Treatment led to a selective prolongation of the QT interval which was highly correlated with the degree of taurine depletion (r2 = 0.92, p less than .001). Compared to controls, the duration of ventricular muscle action potentials was significantly increased in GES-treated rats, and this accounted for the prolongation of QT intervals. Oral taurine supplements reversed GES-induced cardiac taurine depletion and the associated increased duration of action potentials and QT intervals. In vitro superfusion with 0.2-10 mM GES or taurine had no effect on action potentials of control or GES-treated rats. These data indicate that intracellular taurine may play a role in regulating myocardial action potential duration, particularly during repolarization.  相似文献   

7.
Perfusion with high millimolar levels of taurine evoked a long-lasting potentiation (LLP-TAU) of synaptic transmission in the Schaffer-collateral CA1 region of the rat hippocampus. Although LLP-TAU showed some correlations to increases in the total taurine content of hippocampal slices, it could not be blocked by the taurine transport inhibitor guanidinoethanesulfonic acid (GES), which was able to significantly reduce total slice taurine uptake. Inhibition of GABA transport by either nipecotic acid or beta-guanidinopropionate failed to abolish LLP-TAU and had no significant effect on taurine uptake. The combination of GES and nipecotic acid also had no significant effect on LLP-TAU. Experiments with transportable structural analogs of taurine (beta-aminoisobutyric acid, homotaurine, and isethionic acid) suggest that activation of classical taurine transport pathways does not always yield a robust LLP-TAU. Hippocampal LLP-TAU could be significantly attenuated, however, by pre-incubation with submillimolar levels of taurine. In summary, the development of LLP-TAU in the rat hippocampus appears to be associated with the intracellular accumulation rather than the activation of known transporters of taurine, but the precise means of its accumulation remains to be identified.  相似文献   

8.
Administration of guanidinoethanesulfonate (GES) to male rats for 5 weeks resulted in a 90% decrease in the hepatic taurine concentration. This depletion of hepatic taurine was associated with a 570% increase in the concentration of glycine-conjugated bile acids, a 30% decrease in the concentration of taurine-conjugated bile acids, and an increase in the ratio of glycine- to taurine-conjugated bile acids from 0.046 to 0.45. The total concentration of bile salts in the bile and the turnover of cholic acid were not affected by administration of GES. The data indicate that the taurine-depleted rat conserves taurine to some extent by using glycine instead of taurine for bile salt synthesis but not by decreasing the daily fractional turnover of bile acids.  相似文献   

9.
Summary Taurine transport was measured in cultured epithelial cells-LLC-PK1 and MDCK-grown on permeable membrane supports. Taurine transport by LLC-PK1 cells was greater on the apical surface compared to the basolateral surface. MDCK cells exhibited greater taurine uptake from the basolateral side. Transepithelial taurine flux was in the direction of apical to basolateral in the LLC-PK1 monolayers. There was no net transepithelial movement of taurine in the MDCK monolayers. Efflux of taurine from the apical and the basolateral membrane surfaces of LLC-PK1 cell monolayers was stimulated by external-alanine but not L-alanine. Efflux of taurine from MDCK cell monolayers was stimulated by-alanine on the basolateral surface. While the competitive inhibitor guainidinoeithane sulfonate (GES) competitively inhibited taurine uptake to a similar degree on the apical and basolateral surface of LLC-PK1 cell monolayers, GES had a more potent inhibitory effect on the basolateral taurine uptake in MDCK cells when compared to its inhibition of apical taurine transport. We conclude that there are characteristic differences in transport of taurine by apical and basolateral surfaces of LLC-PK1 and MDCK cells which may be the consequence of asymmetric distribution or unique structural properties of the taurine transporter.Supported by a grant from the National Institutes of Health (DK 37223), the American Heart Association (92-004470).  相似文献   

10.
Taurine is in high concentration in the milk of most mammals. Intraperitoneal injection of [35S]taurine into lactating rats leads to the appearance of label in the milk, and the dpm/ml milk are significantly decreased by treatment with guanidinoethyl sulfonate (GES), an analog of taurine. Pups nursed by GES-treated mothers have retinal taurine levels about 45% lower than controls during the period from birth to 17 days old suggesting a dependence of retinal taurine on dietary intake during the neonatal period. These deficits in taurine may be associated with visual dysfunction as seen in adult rats depleted of retinal taurine.  相似文献   

11.
目的:研究口服葡萄糖-电解质液(GES)对大鼠40%血容量失血时肠组织缺血性损伤的影响。方法:雄性SD大鼠,用氯胺酮-速眠新Ⅱ肌注复合麻醉后,行右颈动脉插管。随机分为3组(n=24):GES对照组(GES),失血性休克组(HS)和失血性休克+口服GES液组(HS+GES)。GES组:不放血,手术后口服GES;HS和HS+GES组按全身血容量的40%分两次间隔15min放血制作失血性休克模型。HS+GES组于失血后0.5h、1h和6h分3次给予3倍失血量的GES灌胃。用激光多谱勒血流仪测定失血后2h、4h和24h肠组织血流量(IBF)后,处死动物后取肠组织检测二胺氧化酶(DAO)和Na^+-K^+-ATP酶活性,测定肠组织含水率(WG),并做病理学检查。结果:HS+GES组IBF和Na-K-ATP酶活性均显著高于HS组(P〈0.05),但显著低于GES组(P〈0.05);失血各组肠WG显著高于GES组(P〈0.05),24h时HS+GES组WG显著低于HS组(P〈0.05);HS+GES组24hDAO活性均显著高于HS组(P〈0.05),但显著低于GES组(P〈0.05);失血后24h病理检查HS+GES组肠组织水肿和充血改变比HS组明显减轻。结论:口服GES液能显著增加大鼠失血性休克早期IBF,提高Na^+-K^+-ATP酶和DAO活性,减轻肠组织水肿和缺血性损伤。  相似文献   

12.
Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na(+)-dependent taurine transporter TauT, and passive release via a volume-sensitive leak pathway. Here we demonstrate that: (i) TauT localizes to the primary cilium of growth-arrested NIH3T3 fibroblasts, (ii) long-term exposure to TNF(alpha) or hypertonic sucrose medium, i.e., growth medium supplemented with 100 mM sucrose, increases ciliary TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium.  相似文献   

13.
Taurine is the major free amino acid of the vertebrate retina. Treatment of rats with guanidinoethyl sulfonate (GES), a taurine analogue which competes with taurine for transport sites, leads to depletion of 60% of retinal taurine with little effect on other free amino acids. Supplementation of the diet with 0.3% taurine gives partial protection against depletion, confirming that taurine-GES competition underlies part of the effects. The magnitude of the depletion suggests the importance of taurine transport across the blood-retinal barrier for the maintenance of retinal taurine levels.  相似文献   

14.
Melatonin and taurine reduce early glomerulopathy in diabetic rats   总被引:23,自引:0,他引:23  
Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-beta1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg/kg. Two days after streptozotocin, diabetic rats were assigned to one of the following groups: i) untreated; ii) melatonin supplement by 0.02% in drinking water; or iii) taurine supplement by 1% in drinking water. Four weeks after streptozotocin, diabetic rats (n = 6: plasma glucose 516+/-12 mg/dl) exhibited 6.1 fold increase in urinary protein excretion, 1.4 fold increase in glomerular TGF-beta1 mRNA, 1.7 fold increase in glomerular fibronectin mRNA, 2.2 fold increase in plasma lipid peroxides (LPO), and 44 fold increase in urinary LPO excretion above the values in control rats (n = 6: plasma glucose 188+/-14 mg/dl). Chronic administration of melatonin (n = 6) and taurine (n = 6) prevented increases in glomerular TGF-beta1 and fibronectin mRNAs and proteinuria without having effect on blood glucose. Both treatments reduced lipid peroxidation by nearly 50%. The present data demonstrate beneficial effects of melatonin and taurine on early changes in diabetic kidney and suggest that diabetic nephropathy associated with hyperglycemia is largely mediated by oxidative stress.  相似文献   

15.
In 1970s, taurine deficiency was reported to induce photoreceptor degeneration in cats and rats. Recently, we found that taurine deficiency contributes to the retinal toxicity of vigabatrin, an antiepileptic drug. However, in this toxicity, retinal ganglion cells were degenerating in parallel to cone photoreceptors. The aim of this study was to re-assess a classic mouse model of taurine deficiency following a treatment with guanidoethane sulfonate (GES), a taurine transporter inhibitor to determine whether retinal ganglion cells are also affected. GES treatment induced a significant reduction in the taurine plasma levels and a lower weight increase. At the functional level, photopic electroretinograms were reduced indicating a dysfunction in the cone pathway. A change in the autofluorescence appearance of the eye fundus was explained on histological sections by an increased autofluorescence of the retinal pigment epithelium. Although the general morphology of the retina was not affected, cell damages were indicated by the general increase in glial fibrillary acidic protein expression. When cell quantification was achieved on retinal sections, the number of outer/inner segments of cone photoreceptors was reduced (20?%) as the number of retinal ganglion cells (19?%). An abnormal synaptic plasticity of rod bipolar cell dendrites was also observed in GES-treated mice. These results indicate that taurine deficiency can not only lead to photoreceptor degeneration but also to retinal ganglion cell loss. Cone photoreceptors and retinal ganglion cells appear as the most sensitive cells to taurine deficiency. These results may explain the recent therapeutic interest of taurine in retinal degenerative pathologies.  相似文献   

16.
A recombinant baculovirus system was used to express the human taurine transporter in Sf9 cells and characterize its mediated uptake activity. This uptake process exhibited: (i) Na(+) dependence, (ii) larger inhibition of taurine transport by competing beta-amino acids than by alpha- and gamma-amino acids, (iii) apparent Michaelis constant, K(t), for taurine transport of 1.6 +/- 0.2 microM, and (iv) a maximal velocity, V(max), of 262 +/- 18 pmol/mg protein per 15 min. Coexpression of a molecular chaperone, human calnexin, enhanced taurine transporter activity by 43%. During development of taurine transporter expression, exposure to tunicamycin (10 microg/ml) decreased taurine transport activity by 76%. The taurine transporter linked to glutathione S-transferase (GST) was expressed to determine whether this conjugate also elicits taurine transport activity. Even though transport activity was markedly decreased, its Na(+) dependence was still evident. Coexpression of calnexin enhanced expression of this conjugated transporter activity by 54%. Immunoblot analysis revealed that calnexin did not change the amount of GST-taurine transporter conjugate or its molecular mass (i.e., 58.4-68.0 kDa). However, tunicamycin decreased its molecular mass. Taken together, taurine transport activity in a baculovirus expression system has characteristics similar to its wild-type counterpart. Stimulation of transport activity by coexpression with calnexin suggests the importance of transporter folding for optimal transport activity. Glycosylation of the transporter also increases its transport activity. Finally, GST-taurine transporter conjugate usage may aid transporter purification even though its transport activity decreases.  相似文献   

17.
The present work investigates the involvement of kinins in the effects of taurine in fructose-fed hypertensive rats. The effects of taurine on blood pressure, plasma glucose, insulin, and the insulin sensitivity index were determined. Angiotensin-converting enzyme (ACE) activity and nitrite content in plasma, plasma and tissue kallikrein activity, and taurine content were also investigated. The blood pressure changes in response to the coadministration of inhibitors of the synthesis of nitric oxide (NO), prostaglandins (PGs), or a kinin receptor blocker along with taurine was also evaluated. Fructose-fed rats had higher blood pressure and elevated plasma levels of glucose and insulin. Kallikrein activity, taurine, and nitrite contents were significantly lower in fructose-fed rats as compared with controls. The increases in systolic blood pressure, hyperglycemia, and hyperinsulinemia were controlled by taurine administration in fructose-fed rats. ACE activity was lower, while nitrite and taurine content and kallikrein activity were higher, in taurine-supplemented rats as compared with fructose-fed rats. A significant increase in blood pressure was observed in rats cotreated with the inhibitors Hoe 140 (a kinin receptor blocker), L-NAME (a NO synthase inhibitor), or indomethacin (a PG synthesis inhibitor) with taurine for 1 week as compared with taurine-treated fructose-fed rats. This suggests that the antihypertensive effect of taurine in fructose-fed rats was blocked by the inhibitors. Augmented kallikrein activity and, hence, increased kinin availability may be implicated in the effects of taurine in fructose-fed hypertensive rats.  相似文献   

18.
Summary In a variety of mammalian species it has been established that taurine is a necessary component of the visual system, however, the exact mechanism(s) as to the function of taurine is(are) elusive. Additionally, taurine is speculated to be a membrane stabilizer by interacting with phospholipids and a regulator of protein phosphorylation. Therefore the inhibition by taurine and taurine analogues of the phosphorylation of an 20 kDa protein present in the mitochondrial fraction of the rat retina has been investigated using computational methods. Correlations between molecular weight, molecular volume, and calculated pKa values vs. IC50 values are reported. These data appear to support the hypotheses according to Lombardini and Props that the inhibition of the phosphorylation of an 20kDa protein by taurine and taurine analogues is dependent on (i) the critical distance between the nitrogen and sulfur atoms in the taurine moiety (S-C-C-N) of the analogue; (ii) the environment of the nitrogen atom in the taurine analogue (saturated ring vs. unsaturated ring); and (iii) the placement of both the sulfur and nitrogen atoms not being present simultaneously in the ring structure. Using computational methods we present results that support hypotheses (i) and (ii).  相似文献   

19.
Vitamin D deficiency is characterized by secondary hyperparathyroidism, phosphaturia, bicarbonaturia, and generalized amino aciduria. While the site at which the phosphaturia ensues has been described to occur at the apical membrane of the renal proximal tubule, no studies are available for amino aciduria. Thus, weanling rats were fed five vitamin D-deficient diets for 4-6 weeks: (i) VLC, 0.02% Ca, 0.3% P; (ii) VLC + 1,25[OH]2D, same + 500 pmole ip for 2 days; (iii) LC, 0.45% Ca, 0.3% P; (iv) HC, 2.5% Ca, 0.3% P; and (v) VLP, 1.2% cA, 0.1% P. The normal diet contained 1.2% Ca, 0.7% P, and 2.5 micrograms% vitamin D. Amino acids, serum 25[OH]D, 1,25[OH]2D, and PTH, using a specific anti-rat PTH antibody, were measured. There were 4.65 +/- 1.1- and 10 +/- 1.39-fold increases in the urinary excretion of taurine and proline, respectively, irrespective of diet. Hypocalcemia, secondary hyperparathyroidism, and increased concentrations of urinary cAMP were demonstrated in all diets, except VLP. Taurinuria and prolinuria manifested at the renal brush border membrane. There was 21-25% and 26-39% attenuation in the peak of the overshoot of Na(+)-dependent uptake of taurine and proline, respectively, that was statistically significant as compared to that of normal diets (P less than 0.01). VLC resulted in a reduction in the Vmax of taurine (VLC, 78.26 +/- 6.88 vs normal, 115.4 +/- 6.26 pmole/mg protein/min, P less than 0.01) and proline (VLC, 402.06 +/- 31.26 vs normal, 589.49 +/- 37.42 pmole/mg protein/15 sec, P less than 0.01) uptake. Acute supplementation with pharmacological doses of 1,25[OH]2D normalized the Vmax of taurine and proline uptake, without affecting their renal excretion. The VLP diet induced and increase in the Km of taurine (VLP, 58.95 +/- 1.88 microM vs normal, 39.75 +/- 2.75 microM P less than 0.01) and proline (VLP, 116.75 +/- 8.87 microM vs normal, 76.82 +/- 7.27 microM P less than 0.01) uptake, without an associated perturbation in the Vmax of uptake. We conclude that the amino aciduria of vitamin D deficiency manifests at the apical membrane of the proximal tubule by an attenuation in the Na(+)-dependent uptake of amino acids. This is associated with a reduction in the initial rate of uptake or number of active transporters in the presence of secondary hyperparathyroidism and hypocalcemia, or a decrease in the affinity of the symport in the presence of P depletion. The data suggest the interplay of multiple factors in the causation of amino aciduria.  相似文献   

20.
Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号