首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.  相似文献   

2.
A new electrochemical hybridisation genosensor has been designed. This genosensor is based on a concept adapted from classical dot–blot DNA analysis, but implemented in an electrochemical biosensor configuration. The use of amperometric transduction and the enzyme label method—that increases the genosensor sensitivity—are the main features of this new approach. The analytical procedure consists of five steps: DNA target immobilisation by adsorption onto a nylon membrane, hybridisation between DNA target and biotin–DNA probe, complexation reaction between biotin-DNA probe and an enzyme (horseradish peroxidase) streptavidin conjugate; integration of the modified membrane onto an electrochemical transducer; and finally, amperometric detection using a suitable substrate for the enzyme labelled duplex. Besides the adapted dot–blot format, a competitive assay in which the target is in solution is reported as well. This procedure, based on amperometric transduction, represents certain advantages with respect to dot–blot analysis: labelled hybrid detection is far simpler, quicker and requires more ordinary or simple reactives; the response obtained is a direct analytical signal via low-cost instrumentation, a nonisotopic labelling is used, and the membranes can be reused. These characteristics are ideal in implementing the procedure developed in kit form.  相似文献   

3.
A hybridisation-based genosensor was designed on a 100 nm sputtered gold film. This material worked as an immobilisation and transduction surface. A 30-mer sequence that encodes a short lysine-rich region, unique to SARS (severe acute respiratory syndrome) virus, was chosen as target. A complementary strand (probe), labelled with a thiol group at the 3'-end, was immobilised on the film. After blocking the surface, hybridisation with the biotin-conjugated SARS strand (at the 3'-end) took place. Interaction with alkaline phosphatase-labelled streptavidin permits amplified indirect electrochemical detection. The analytical signal is constituted by an electrochemical process of indigo carmine, the soluble product of the enzymatic hydrolysis of 3-indoxyl phosphate. The use of a sensitive electrochemical technique such as square wave voltammetry allowed a detection limit of 6 pM to be obtained for this DNA sequence, lower than any other found in the bibliography. The parameters affecting the methodology were studied, with special attention being placed on selectivity. Specificity was clearly enhanced when interaction time and stringency (in the form of formamide percentage) were increased. With 1h of strand interaction and employing 50% of formamide in the hybridisation buffer, a 3-base mismatch strand was perfectly distinguished from the complementary.  相似文献   

4.
An electrochemical genosensor for the detection of hypermethylation of the glutathione S-transferase P1 (GSTP1) gene, a specific marker of prostate cancer, was reported. This new sensor was used in combination with a single-use carbon graphite working electrode and differential pulse voltammetry, with the results of sample analysis based on the guanine oxidation signals obtained at +1.0 V before and after hybridization between probe and synthetic target or denatured PCR samples. The detected DNA hybridization was also characterized by electrochemical impedance spectroscopy with potassium ferri/ferrocyanide as a redox probe. The protocol consisted of 2 different modes: (i) capture probes selective for methylation-specific and unmethylated GSTP1 sequences were immobilized onto the sensor directly, and hybridization was formed on the electrode surface; (ii) probe/target or probe/noncomplementary target couples were mixed in solution phase, and the transducer was modified through simple adsorption. The limit of detection (S/N=3) was calculated as 2.92 pmol of target sequence in a 100-μl reaction volume. The optimum analytical detection parameters for the biosensor, as well as its future prospects, were also presented.  相似文献   

5.
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1μM and an immobilisation time of 60min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle.  相似文献   

6.
The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated. Relative areal densities of immobilised probe were measured on planar and enhanced surface area substrates using epi-fluorescence microscopy. The reproducibility of the each immobilisation method was seen to have a direct effect on the reproducibility of the impedimetric signal. The sensitivity and selectivity was seen to be dependent on the type of immobilisation method. Real time, impedimetric detection of target DNA hybridisation concentrations as low as 25 and 1 nM were possible. The impact that probe concentration had on the impedimetric signal for selective and non-selective interactions was also investigated.  相似文献   

7.
We report the synthesis and the characterisation of the first electroactive ferrocene-labelled oligonucleotide phosphorothioate (ODN-Fc-Ps) probe obtained by automated synthesis. The grafting of ODN-Fc-Ps probe on gold electrode resulted in the appearance of the ferrocene redox couple in cyclic voltammetry confirming the effectiveness of the ODN grafting. The electrochemical response of the modified electrode was analysed in aqueous media before and after hybridisation with ODN target. The hybridisation with ODN target induces a large conformational change in the surface-confined DNA structure monitored by cyclic voltammetry of the ferrocene marker which confirms the potential of ferrocene-labelled oligonucleotide phosphorothioate to develop electrochemical DNA chips.  相似文献   

8.
Dual polarisation interferometry is an analytical technique that allows the simultaneous determination of thickness, density and mass of a biological layer on a sensing waveguide surface in real time. We evaluated, for the first time, the ability of this technique to characterise the covalent immobilisation of single stranded probe DNA and the selective detection of target DNA hybridisation on a silanised support. Two immobilisation strategies have been evaluated: direct attachment of the probe molecule and a more complex chemistry employing a 1,2 homobifunctional crosslinker molecule. With this technique we demonstrate it was possible to determine probe orientation and measure probe coverage at different stages of the immobilisation process in real time and in a single experiment. In addition, by measuring simultaneously changes in thickness and density of the probe layer upon hybridisation of target DNA, it was possible to directly elucidate the impact that probe mobility had on hybridisation efficiency. Direct covalent attachment of an amine modified 19 mer resulted in a thickness change of 0.68 nm that was consistent with multipoint attachment of the probe molecule to the surface. Blocking with BSA formed a dense layer of protein molecules that absorbed between the probe molecules on the surface. The observed hybridisation efficiency to target DNA was approximately 35%. No further significant reorientation of the probe molecule occurred upon hybridisation. The initial thickness of the probe layer upon attachment to the crosslinker molecule was 0.5 nm. Significant reorientation of the probe molecule surface normal occurred upon hybridisation to target DNA. This indicated that the probe molecule had greater mobility to hybridise to target DNA. The observed hybridisation efficiency for target DNA was approximately 85%. The results show that a probe molecule attached to the surface via a crosslinker group is better able to hybridise to target DNA due to its greater mobility.  相似文献   

9.
The direct detection of oligodeoxynucleotide (ODN) hybridisation using electrochemical impedance spectroscopy was made on interdigitated array (IDA) gold (Au) ultramicroelectrodes manufactured by silicon technology. The immobilisation of single stranded ODNs (ssODNs) was accomplished by self-assembling of thiol-modified ODNs onto an Au-electrode surface. Faradaic impedance was measured in the presence of K(3)[Fe(CN)(6)]. Double strand formation was identified by a decrease of approximately 50% in impedance in the low frequency region in the presence of K(3)[Fe(CN)(6)], compared to the spectrum of single stranded ODN. The frequency dependent diffusion of Fe(CN)(6)(3-) ions through defects in the ODN monolayer determines the impedance of Au-ssODN surface. The influence of DNA intercalator methylene blue on the impedance of both, single and double strands, was examined along with K(3)[Fe(CN)(6)] and confirmed by cyclic voltammetry. The layer densities and the hybridisation have been further corroborated by chronoamperometric redox recycling of para-aminophenol (p-AP) in ELISA like experiments. It can be concluded, that a performed impedance spectroscopy did not change the layer density. The impedance spectroscopy at ultramicroelectrodes combined with faradaic redox reactions enhances the impedimetric detection of DNA hybridisation on IDA platforms.  相似文献   

10.
The high sensitivity and specificity of DNA hybridisation techniques makes them powerful tools for environmental or clinical analysis. This work describes the development of a DNA piezoelectric biosensor for the detection of the hybridisation reaction. Attention was focused on the choice of the coating chemistry that could be used for the immobilisation of oligonucleotides onto the gold surface of the quartz crystal. Four immobilisation procedures were tested and compared considering the amount of immobilised probe, the extent of the hybridisation reaction, the possibility of regeneration and the absence of non-specific adsorption. All the experiments were performed with oligonucleotides of 25 bases (probe, target and non-complementary oligonucleotide). The four coating methods were all based on the use of self-assembled monolayers (SAM). Three of them employed the interaction between streptavidin and biotin for the immobilisation of a biotinylated probe. Results indicated that immobilisation of a biotinylated probe on streptavidin linked to a layer of carboxylated dextran provides higher sensitivity for the detection of the hybridisation reaction, absence of non-specific adsorption and a higher stability with respect to the regeneration step.  相似文献   

11.
This paper deals with the use of an electrochemical genosensor array for the rapid and simultaneous detection of different food-contaminating pathogenic bacteria. The method includes PCR amplification followed by analysis of the amplicons by hybridisation with toxin-specific oligonucleotide probes. A screen-printed array of four gold electrodes, modified using thiol-tethered oligonucleotide probes, was used. Unmodified PCR products were captured at the sensor interface via sandwich hybridisation with surface-tethered probes and biotinylated signaling probes. The resulting biotinylated hybrids were coupled with a streptavidin-alkaline phosphatase conjugate and then exposed to an alpha-naphthyl phosphate solution. Differential pulse voltammetry was finally used to detect the alpha-naphthol oxidation signal. Mixtures of DNA samples from different bacteria were detected at the nanomolar level without any cross-interference. The selectivity of the assay was also confirmed by the analysis of PCR products unrelated to the immobilised probes.  相似文献   

12.
A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.  相似文献   

13.
Detection of specific DNA sequences in clinical samples is a key goal of studies on DNA biosensors and gene chips. Herein we present a highly sensitive electrochemical genosensor for direct measurements of specific DNA sequences in undiluted and untreated human serum and urine samples. Such genosensing relies on a new ternary interface involving hexanedithiol (HDT) co-immobilized with the thiolated capture probe (SHCP) on gold surfaces, followed by the incorporation of 6-mercapto-1-hexanol (MCH) as diluent. The performance of ternary monolayers prepared with linear dithiols of different lengths was systematically examined, compared and characterized by cyclic voltammetry and electrochemical impedance spectroscopy, with HDT exhibiting the most favorable analytical performance. The new SHCP/HDT+MCH monolayer led to a 80-fold improvement in the signal-to-noise ratio (S/N) for 1 nM target DNA in undiluted human serum over the common SHCP+MCH binary alkanethiol interface, and allowed the direct quantification of the target DNA down to 7 pM (28 amol) and 17 pM (68 amol) in undiluted/untreated serum and urine, respectively. It also displayed attractive antifouling properties, as indicated from the favorable S/N obtained after a prolonged exposure (24h) to untreated biological matrices. These attractive features of the SHCP/HDT+MCH sensor interface indicate considerable promise for a wide range of clinical applications.  相似文献   

14.
An immobilisation procedure based on the direct coupling of thiol-derivatised oligonucleotide probes to bare gold sensor surfaces has been used for DNA sensing applications. The instrumentation used relies on surface plasmon resonance (SPR) transduction; in particular the commercially available instruments BIACORE X and SPREETA, have been employed in this study. The performances of the SPR-based DNA sensors resulting from direct coupling of thiol-derivatised DNA probes onto gold chips, have been studied in terms of the main analytical parameters, i.e. selectivity, sensitivity, reproducibility, analysis time, etc. A comparison between the thiol-derivatised immobilisation approach and a reference immobilisation method, based on the coupling of biotinylated oligonucleotide probes onto a streptavidin coated dextran sensor surface, using synthetic complementary oligonucleotides has been discussed. Finally, a denaturation method to obtain ssDNA ready for hybridisation analysis has been applied to polymerase chain reaction (PCR) amplified samples, for the detection of genetically modified organisms (GMOs).  相似文献   

15.
The work evaluated a series of approaches to optimise detection of polymerase chain reaction (PCR) amplified DNA samples by an optical sensor based on surface plasmon resonance (SPR) (BiacoreX). The optimised procedure was based on an asymmetric PCR amplification system to amplify predominantly one DNA strand, containing the sequence complementary to a specific probe. The study moved into two directions, aiming to improve the analytical performance of SPR detection in PCR amplified products. One approach concerned the application of new strategies at the level of PCR, i.e. asymmetric PCR to obtain ssDNA amplified fragments containing the target capable of hybridisation with the immobilised complementary probe. The other strategy focused on the post-PCR amplification stage. Optimised denaturing conditions were applied to both symmetrically and asymmetrically amplified fragments. The effective combination of the two strategies allowed a rapid and specific hybridisation reaction. The developed method was successfully applied in the detection of genetically modified organisms.  相似文献   

16.
A sensor capable of detecting a specific DNA sequence was designed by bulk modification of a graphite epoxy composite electrode with streptavidin (2% w/w). Streptavidin is used to immobilise a biotinylated capture DNA probe to the surface of the electrode. Simultaneous hybridisation occurs between the biotin DNA capture probe and the target-DNA and between the target-DNA and a digoxigenin modified probe. The rapid binding kinetic of streptavidin-biotin allows a one step immobilisation/hybridisation procedure. Secondly, enzyme labelling of the DNA duplex occurs via an antigen-antibody reaction between the Dig-dsDNA and an anti-Dig-HRP. Finally, electrochemical detection is achieved through a suitable substrate (H2O2) for the enzyme-labelled duplex. Optimisation of the sensor design, the modifier content and the immobilisation and hybridisation times was attained using a simple nucleotide sequence. Regeneration of the surface is achieved with a simple polishing procedure that shows good reproducibility. The generic use of a modified streptavidin carbon-polymer biocomposite electrode capable of surface regeneration and a one step hybridisation/immobilisation procedure are the main advantages of this approach. In DNA analysis, this procedure, if combined with the polymerase chain reaction, would represent certain advantages with respect to classical techniques, which prove to be time consuming in situations where a simple and rapid detection is required. This innovative developed material may be used for the detection of any analyte that can be coupled to the biotin-streptavidin reaction, as is the case of immunoassays.  相似文献   

17.
Lead sulfide (PbS) nanoparticles were synthesized in aqueous solution and used as oligonucleotide labels for electrochemical detection of the 35 S promoter from cauliflower mosaic virus (CaMV) sequence. The PbS nanoparticles were modified with mercaptoacetic acid and could easily be linked with CaMV 35 S oligonucleotide probe. Target DNA sequences were covalently linked on a mercaptoacetic acid self-assembled gold electrode, and DNA hybridization of target DNA with probe DNA was completed on the electrode surface. PbS nanoparticles anchored on the hybrids were dissolved in the solution by oxidation of HNO3 and detected using a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used to monitor the hybridization reaction. The CaMV 35 S target sequence was satisfactorily detected with the detection limit as 4.38 × 10−12 mol/L (3σ). The established method extends nanoparticle-labeled electrochemical DNA analysis to specific sequences from genetically modified organisms with higher sensitivity and selectivity.  相似文献   

18.
Human brain bacterial meningitis is a life-threatening disease mainly caused by Neisseria meningitidis, lead to several complications including damage of brain or even death. The present available methods for diagnosis of meningitis have one or more limitations. A rmpM gene based genosensor was fabricated by immobilizing 5′-amino modified 19-mer single stranded DNA probe onto carbon-mercaptooctadecane/carboxylated multi-walled carbon nanotubes composite electrode and hybridized with 2.5–40 ng/6 μL of single stranded genomic DNA (ssG-DNA) of N. meningitidis from cerebrospinal fluid (CSF) of the suspected meningitis patients. The electrochemical response was measured by using cyclic voltammetry and differential pulse voltammetry (DPV) using 1 mM methylene blue as redox indicator in 30 min (including a response time of 1 min) at 25 °C. The sensitivity of the genosensor was 3.762 (μA/cm2)/ng and limit of detection was 2 ng of ssG-DNA of N. meningitidis with DPV. The genosensor has specificity only to N. meningitidis and does not hybridize with the genomic DNA of any other possible pathogen in human CSF. The immobilization of the probe and hybridization of the ssG-DNA were characterized by using electrochemical impedance in presence of 5 mM potassium ferricyanide and scanning electron microscopy. The genosensor loses only 12 % of its original DPV current on storage at 4 °C for 6 months. Carbon composite based electrochemical array can be constructed to detect multiple bacterial meningitis suspected patient CSF samples during an outbreak of the disease.  相似文献   

19.
Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence. When immobilised on a gold electrode in PNA form it was possible to detect hybridisation of mecA PCR product electrochemically at concentrations as low as 10nM. By incorporating an undecane-thiol and 1.8 nm glycol spacer into the PNA probe it was possible to extend the limit of detection for mecA to 10 pM. Most published studies on EIS and nucleic acid detection report the use of short artificial DNA sequences or novel signal amplification schemes which improve sensitivity whereas this study reports the successful detection of long DNA fragments produced by PCR following extraction from clinical isolates. Finally, using screen printed electrodes the paper demonstrates hybridisation monitoring of mecA in an "on-line" assay format under ambient conditions which paves the way for rapid mecA detection in point of care scenarios.  相似文献   

20.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号