首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ryukyu spiny rat, Tokudaia osimensis, has an XO/XO sex chromosome constitution, lacking a Y chromosome and the mammalian sex-determining gene SRY. To investigate the Y-loss event, we traced three proto-Y-linked genes, RBMY1A1, EIF2S3Y, and KDM5D, in the genome. The original Y-linked RBMY1A1 was lost as well as SRY, and the remaining RBMY1A1 was a processed pseudogene on autosome. In contrast, EIF2S3Y and KDM5D were conserved in genomes of both sexes as a result of their translocation from the Y chromosome to the X chromosome and/or autosomes. Furthermore, these genes were expressed in gonads and brains of both sexes. Our study indicated a loss of Y-linked genes with important male functions to be necessary for the Y chromosome to disappear. These functions might have been retained through the acquisition of new genes, and therefore, the Y-loss has had no harmful effect on the maintenance of this species.  相似文献   

2.
Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Binding of XO to vascular endothelial cell glycosaminoglycans (GAGs) results in significant resistance to inhibition by traditional pyrazolopyrimidine-based inhibitors such as allopurinol. Therefore, we compared the extent of XO inhibition (free and GAG-bound) by allopurinol to that by febuxostat, a newly approved nonpurine XO-specific inhibitor. In solution, febuxostat was 1000-fold more potent than allopurinol at inhibiting XO-dependent uric acid formation (IC50 = 1.8 nM vs 2.9 μM). Association of XO with heparin-Sepharose 6B (HS6B-XO) had minimal effect on the inhibition of uric acid formation by febuxostat (IC50 = 4.4 nM) while further limiting the effect of allopurinol (IC50 = 64 μM). Kinetic analysis of febuxostat inhibition revealed Ki values of 0.96 (free) and 0.92 nM (HS6B-XO), confirming equivalent inhibition for both free and GAG-immobilized enzyme. When XO was bound to endothelial cell GAGs, complete enzyme inhibition was observed with 25 nM febuxostat, whereas no more than 80% inhibition was seen with either allopurinol or oxypurinol, even at concentrations above those tolerated clinically. The superior potency for inhibition of endothelium-associated XO is predictive of a significant role for febuxostat in investigating pathological states in which XO-derived ROS are contributive and traditional XO inhibitors are only slightly effective.  相似文献   

3.
4.
A 2-year-old male with bilateral undescended gonads, hypoplastic external auditory canals, large umbilical hernia and XO/XY chromosome mosaicism is described in this communication. Salient features of other similar cases, i.e. XO/XY mosaicism in phenotypic males, from the literature are summarized, showing the wide diversity of manifestations of this syndrome.  相似文献   

5.
A Endo  T Watanabe 《Teratology》1989,40(5):525-529
We examined whether the chromosomal imbalance inherent in an XO constitution in mice is more susceptible to teratogenic influence of biotin deficiency using a newly established mouse colony with pure X monosomy. We hypothesized that XO mothers or XO embryos might be more susceptible to certain teratogens. Contrary to our expectation, the incidence of external malformations induced by biotin deficiency did not differ either between XX dams and XO dams or between XX fetuses and XO fetuses.  相似文献   

6.
A cytogenetic and histological study of nine XO/XY or XO/XY/XYY mosaic mice revealed that XO germ cells were selectively eliminated from the spermatogenic epithelium. Although the XO contribution to the bone marrow in seven mice exceeded 50%, in only two cases were significant numbers of dividing XO spermatogonia present. These XO germ cells only occasionally progressed to meiosis and then degenerated prior to first meiotic metaphase. It was concluded that the mouse Y chromosome carries a "spermatogenesis gene" (or genes) which acts autonomously in the germ cells.  相似文献   

7.
It is not known why XO mouse embryos, which develop more slowly than XX embryos until early mid-gestation, reach the same stage in their growth and development as their XX littermates at the mid-gestation stage. It is hypothesized that there is an effect of 'litter size' that causes an acceleration of the development of XO embryos at mid-gestation. The present study was performed to determine whether the development of XO embryos is retarded compared with that of their XX litermates at early mid-gestation (day 8 of gestation), before reduction of litter size. The percentage of pre-somite stage XO embryos was greater than the percentage of pre-somite stage XX embryos, and the mean number of somites was greater in XX embryos than it was in XO embryos. These findings indicate that the development of XO embryos was retarded when compared with that of their XX litermates at early mid-gestation. This result is discussed with respect to the compensatory development of XO embryos at mid-gestation and the reduction of litter size shortly after early mid-gestation.  相似文献   

8.
X-chromosome segregation, maternal age and aneuploidy in the XO mouse   总被引:1,自引:0,他引:1  
  相似文献   

9.
Spermatogenesis in XO,Sxr mice: role of the Y chromosome   总被引:2,自引:0,他引:2  
The goal of this investigation was to evaluate the role of the Y chromosome in spermatogenesis by a quantitative and qualitative analysis of spermatogenesis as it occurs in the absence of a significant portion of the Y chromosome, i.e., in XO,Sxr male mice. Although these mice have the testis-determining portion of the Y chromosome on their single X chromosome, they lack most of the Y chromosome. Since it was found that all sperm-specific structures were assembled in a normal spatial and temporal pattern in spermatids of XO,Sxr mice, the genes controlling these structures cannot be located on the Y chromosome outside of the Sxr region, and are more likely to be on autosomes or on the X chromosome. In spite of the assembly of the correct sperm-specific structures, spermatogenesis was not quantitatively normal in XO,Sxr mice and significantly reduced numbers of spermatids were found in the seminiferous tubules of these mice. Furthermore, two size classes of spermatids were found in the testes of XO,Sxr mice, normal and twice-normal size. These findings are suggestive of abnormalities of meiosis in XO,Sxr spermatocytes, which lack one of the two sex chromosomes, and may not implicate function of specific genes on the Y chromosome. Morphological abnormalities of spermatids, which were not unique to XO,Sxr mice, were observed and these may be due to either a defective testicular environment because of reduced numbers of germ cells or to the lack of critical Y chromosome-encoded products. Since pachytene spermatocytes of XO,Sxr mice exhibited a sex vesicle, it can be concluded that the assembly of this structure does not depend on the presence of either a complete Y chromosome or the pairing partner for the X chromosome.  相似文献   

10.
11.
Summary An eleven-year-old girl with 45,XO Turner's syndrome, Wilms' tumor and imperforate anus is presented. The family history revealed that a sib of the patient also had imperforate anus. A review of the literature showed that the occurrence of Wilm's tumor in patients with Turner's syndrome has not been recorded previously, although it is known that anomalous differentiation of the kidneys is relatively common in this condition.
Zusammenfassung Ein elfjähriges Mädchen mit 45,XO-Turner-Syndrom, Wilms-Tumor und Atresia ani wird beschrieben. Ein Geschwister hatte ebenfalls eine Atresia ani gezeigt. Wie eine Durchsicht der Literatur ergab, was das Vorkommen des Wilms-Tumors beim Turner-Syndrom vorher neimals beschrieben worden, obwohl bekannt ist, daß Nierenfehlbildungen bei diesem Syndrom relativ häufig sind.
  相似文献   

12.
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.  相似文献   

13.
Postnatally, XO mice have approximately half as many oocytes as their XX sisters. A quantitative histological analysis of XO and XX ovaries throughout oogenesis (14 1/2-24 1/2 days post coitum) revealed that this oocyte deficiency in XO mice is due to excess atresia of oocytes at the late pachytene stage (19 1/2 days post coitum). Female mice heterozygous for a large X inversion (In(X)/X mice) were also found to have excess atresia at late pachytene. It was suggested that in XO mice it is the presence of an unpaired X chromosome, and in In(X)/X mice, the incompleteness of X chromosome pairing, which leads to this excess oocyte atresia. A new quantitative histological procedure which was developed for the analysis of perinatal mouse ovaries is also described.  相似文献   

14.
Potamotrygonidae is a representative family of South American freshwater elasmobranchs. Cytogenetic studies were performed in a Potamotrygon species from the middle Negro River, Amazonas, Brazil, here named as Potamotrygon sp. C. Mitotic and meiotic chromosomes were analyzed using conventional staining techniques, C-banding, and detection of the nucleolus organizing regions (NOR) with Silver nitrate (Ag-NOR). The diploid number was distinct between sexes, with males having 2n = 67 chromosomes, karyotype formula 19m + 8sm + 10st + 30a, and fundamental number (FN) = 104, and females having 2n = 68 chromosomes, karyotype formula 20m + 8sm + 10st + 30a, and FN = 106. A large chromosome, corresponding to pair number two in the female karyotype, was missing in the male complement. Male meiotic cells had 33 bivalents plus a large univalent chromosome in metaphase I, and n = 33 and n = 34 chromosomes in metaphase II. These characteristics are consistent with a sex chromosome system of the XX/XO type. Several Ag-NOR sites were identified in both male and female karyotypes. Positive C-banding was located only in the centromeric regions of the chromosomes. This sex chromosome system, which rarely occurs in fish, is now being described for the first time among the freshwater rays of the Amazon basin.  相似文献   

15.
XO/XY and XO/XY/XYY mosaic hermaphrodites were generated from crosses involving BALB/cWt males. The distribution of Y-bearing cells in the gonads of these mice was studied by in situ hybridisation using the Y-specific probe pY353B. XY cells were found to contribute to all cell lineages of the ovary including follicle cells. The proportion of XY follicle cells was not significantly different from the XY contribution to other gonadal or non-gonadal cell lineages. However, this proportion was consistently low, all the hermaphrodites having a low XY contribution to the animal as a whole. Because the XO- and Y-bearing cell lineages are developmentally balanced, the XY follicle cells cannot have formed as a result of a 'mismatch' in which the Y-directed testis determination process is pre-empted by an early acting programme of ovarian development. These results are discussed with respect to the hypothesis that Tdy acts in the supporting cell lineage, the lineage from which Sertoli cells and follicle cells are believed to be derived.  相似文献   

16.
The murine model for Turner Syndrome is the XO mouse. Unlike their human counterparts, XO mice are typically fertile, and their lack of a second sex chromosome can be transmitted from one generation to the next as an X-linked dominant trait with male lethality. The introduction of an X-linked coat-color marker (tabby) has greatly facilitated the maintenance of this useful mouse strain. XO mice can be produced in large numbers, generation after generation, and rapidly identified on the basis of their sex and coat color. Although this breeding scheme appears to be effective at the phenotype level, its utility has never been conclusively proved at the molecular or cytogenetic levels. Here, we clone and sequence the tabby deletion break point and present a multiplex polymerase chain reaction-based assay for the tabby mutation. By combining the results of this assay with whole-chromosome painting data, we demonstrate that genotype, phenotype, and karyotype all show perfect correlation in the publicly available XO breeding stock. This work lays the foundation for the use of this strain to study Turner Syndrome in particular and the X chromosome in general.  相似文献   

17.
The mortality of human XO embryos   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号