首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central effector of visual transduction in retinal rod photoreceptors, cGMP phosphodiesterase (PDE6), is a catalytic heterodimer (alphabeta) to which low molecular weight inhibitory gamma subunits bind to form the nonactivated PDE holoenzyme (alphabetagamma(2)). Although it is known that gamma binds tightly to alphabeta, the binding affinity for each gamma subunit to alphabeta, the domains on gamma that interact with alphabeta, and the allosteric interactions between gamma and the regulatory and catalytic regions on alphabeta are not well understood. We show here that the gamma subunit binds to two distinct sites on the catalytic alphabeta dimer (K(D)(1) < 1 pm, K(D)(2) = 3 pm) when the regulatory GAF domains of bovine rod PDE6 are occupied by cGMP. Binding heterogeneity of gamma to alphabeta is absent when cAMP occupies the noncatalytic sites. Two major domains on gamma can interact independently with alphabeta with the N-terminal half of gamma binding with 50-fold greater affinity than its C-terminal, inhibitory region. The N-terminal half of gamma is responsible for the positive cooperativity between gamma and cGMP binding sites on alphabeta but has no effect on catalytic activity. Using synthetic peptides, we identified regions of the amino acid sequence of gamma that bind to alphabeta, restore high affinity cGMP binding to low affinity noncatalytic sites, and retard cGMP exchange with both noncatalytic sites. Subunit heterogeneity, multiple sites of gamma interaction with alphabeta, and positive cooperativity of gamma with the GAF domains are all likely to contribute to precisely controlling the activation and inactivation kinetics of PDE6 during visual transduction in rod photoreceptors.  相似文献   

2.
Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.  相似文献   

3.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

4.
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery and adaptation of visual detection. Although major steps in the PDE6 activation/deactivation pathway have been identified, mechanistic understanding of PDE6 regulation is limited by the lack of knowledge about the molecular organization of the PDE6 holoenzyme (αβγγ). Here, we characterize the PDE6 holoenzyme by integrative structural determination of the PDE6 catalytic dimer (αβ), based primarily on chemical cross-linking and mass spectrometric analysis. Our models built from high-density cross-linking data elucidate a parallel organization of the two catalytic subunits, with juxtaposed α-helical segments within the tandem regulatory GAF domains to provide multiple sites for dimerization. The two catalytic domains exist in an open configuration when compared to the structure of PDE2 in the apo state. Detailed structural elements for differential binding of the γ-subunit to the GAFa domains of the α- and β-subunits are revealed, providing insight into the regulation of the PDE6 activation/deactivation cycle.  相似文献   

5.
We have investigated whether the proteolysis of members of the cGMP binding phosphodiesterases (PDE6, PDE5A1, and PDE10A2) by caspase-3 is modulated by the gamma inhibitor subunit of PDE6. We show here that purified caspase-3 proteolyses PDE6, an enzyme composed of two nonidentical catalytic subunits (termed alpha and beta) with molecular mass of 88 and 84 kDa. The proteolysis of PDE6 produced a single fragment with a molecular mass of 78 kDa. This corresponds to the possible cleavage of the caspase-3 consensus DFVD site (amino acids: 164-168) in the alpha subunit and leads to a 50% decrease in the cGMP hydrolysing activity of the enzyme. The addition of rod PDEgamma to the incubation completely blocked the cleavage of PDE6 by caspase-3. In contrast, rod PDEgamma converted PDE5A1 (molecular mass of 98 kDa) to a better substrate for caspase-3. This resulted in the formation of four major fragments with molecular mass of 82-83, 67, 43, and 34 kDa. In addition, caspase-3 induced an approximately 80% reduction in the activity of a partially purified preparation of PDE5A1 in the presence of rod PDEgamma. Caspase-3 also cleaved PDE10A2 (molecular mass of 95 kDa) to a single 48-kDa fragment. This was consistent with cleavage of the DLFD site (amino acids: 312-315) in PDE10A2. In contrast with both PDE6 and PDE5A1, rod PDEgamma was without effect on this enzyme. These data show that rod PDEgamma interacts with at least two members of the cGMP binding PDE family (PDE5A1 and PDE6) and can exert differential effects on the cleavage of these enzymes by caspase-3.  相似文献   

6.
Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.  相似文献   

7.
The mammalian rod photoreceptor phosphodiesterase (PDE6) holoenzyme is isolated in both a membrane-associated and a soluble form. Membrane binding is a consequence of prenylation of PDE6 catalytic subunits, whereas soluble PDE6 is purified with a 17-kDa prenyl-binding protein (PDEdelta) tightly bound. This protein, here termed PrBP/delta, has been hypothesized to reduce activation of PDE6 by transducin, thereby desensitizing the photoresponse. To test the potential role of PrBP/delta in regulating phototransduction, we examined the abundance, localization, and potential binding partners of PrBP/delta in retina and in purified rod outer segment (ROS) suspensions whose physiological and biochemical properties are well characterized. The amphibian homologue of PrBP/delta was cloned and sequenced and found to have 82% amino acid sequence identity with mammalian PrBP/delta. In contrast to bovine ROS, all of the PDE6 in purified frog ROS is membrane-associated. However, addition of recombinant frog PrBP/delta can solubilize PDE6 and prevent its activation by transducin. PrBP/delta also binds other prenylated photoreceptor proteins in vitro, including opsin kinase (GRK1/GRK7) and rab8. Quantitative immunoblot analysis of the PrBP/delta content of purified ROS reveals insufficient amounts of PrBP/delta (<0.1 PrBP/delta per PDE6) to serve as a subunit of PDE6 in either mammalian or amphibian photoreceptors. The immunolocalization of PrBP/delta in frog and bovine retina shows greatest PrBP/delta immunolabeling outside the photoreceptor cell layer. Within photoreceptors, only the inner segments of frog double cones are strongly labeled, whereas bovine photoreceptors reveal more PrBP/delta labeling near the junction of the inner and outer segments (connecting cilium) of photoreceptors. Together, these results rule out PrBP/delta as a PDE6 subunit and implicate PrBP/delta in the transport and membrane targeting of prenylated proteins (including PDE6) from their site of synthesis in the inner segment to their final destination in the outer segment of rods and cones.  相似文献   

8.
Baker BY  Palczewski K 《Biochemistry》2011,50(44):9520-9531
Membrane-bound phosphodiesterase 6 (PDE6) plays an important role in visual signal transduction by regulating cGMP levels in rod photoreceptor cells. Our understanding of PDE6 catalysis and structure suffers from inadequate characterization of the α and β subunit catalytic core, interactions of the core with two intrinsically disordered, proteolysis-prone inhibitory PDEγ (Pγ) subunits, and binding of two types of isoprenyl-binding protein δ, called PrBP/δ, to the isoprenylated C-termini of the catalytic core. Structural studies of native PDE6 have been also been hampered by the lack of a heterologous expression system for the holoenzyme. In this work, we purified PDE6 in the presence of PrBP/δ and screened for additives and detergents that selectively suppress PDE6 basal activity while sparing that of the trypsin-activated enzyme. Some detergents removed PrBP/δ from the PDE complex, separating it from the holoenzyme after PDE6 purification. Additionally, selected detergents also significantly reduced the level of dissociation of PDE6 subunits, increasing their homogeneity and stabilizing the holoenzyme by substituting for its native membrane environment.  相似文献   

9.
10.
Cyclic GMP phosphodiesterase (PDE6) in rod photoreceptors, a key enzyme in vertebrate phototransduction, consists of two homologous catalytic subunits (Palpha and Pbeta) and two identical regulatory subunits (Pgammas). Pgamma regulates the PDE activity through its direct interaction with transducin. Here, using electron microscopy and image analysis of single particles, we show the three-dimensional organization of the basic form of bovine PDE, Palphabetagammagamma, and compare its average image with those of Pgamma-released PDE. The structure of Palphabetagammagamma appears to be a flattened bell-shape, with dimensions of 150 x 108 x 60A, and with a handle-like protrusion attached to the top of the structure. Except for the protrusion, the organization consists of two homologous structures arranged side by side, with each structure having three distinct regions, showing pseudo twofold symmetry. These characteristics are consistent with a model in which the overall structure of Palphabetagammagamma is determined by hetero-dimerization of Palpha and Pbeta, with each subunit consisting of one catalytic and two GAF regions. A comparison of the average image of Palphabetagammagamma with those of Pgamma-released PDE suggests that Pgamma release does not affect the overall structure of Palphabeta, and that the Palphabeta C-terminus, but not Pgamma, is a determinant for the Palphabeta orientation on carbon-coated grids. These observations suggest that the basic structure of PDE does not change during its regulation, which implies that Palphabeta is regulated by its regional interaction with Pgamma.  相似文献   

11.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

12.
The biochemical bases for the differences in cone and rod photoreceptor physiology have not been thoroughly examined because of the difficulty in obtaining cone photoreceptor components. We report here the purification and preliminary characterization of a bovine cyclic GMP phosphodiesterase (PDE) which is enriched in cone photoreceptors. The cone PDE was purified at least 15,000-fold to apparent homogeneity from bovine retinas by DEAE-cellulose and cGMP-Sepharose affinity chromatography. The trypsin-activated cone PDE hydrolyzed cGMP with efficiency similar to that of the rod PDE. However, a number of characteristics distinguished the cone PDE from the rod isozyme including the subunit structure. As previously reported, the apparent molecular weight of the cone PDE large subunit (alpha') was slightly larger than either of the large subunits of the rod PDE (93,500 versus 88,000 and 84,000). Three other smaller polypeptides were associated with the alpha' subunit (Mr = 11,000, 13,000, and 15,000), one of which (11,000) may be identical to the rod PDE gamma subunit. Cone phosphodiesterase binds at least 10-fold more cyclic GMP/mol of PDE than the rod photoreceptor isozyme. Cyclic GMP binds to this noncatalytic site with high affinity (Kd = 11 nM) and dissociates very slowly (t1/2 = 10-20 min at 37 degrees C). Purified rod transducin activated the cone PDE in solution to at least 90% of the trypsin-activated level. The concentration of rod transducin required for half-maximal activation of cone PDE (15 nM) was 50-fold lower than that necessary for half-maximal activation of rod PDE. Thus several properties of the cone phosphodiesterase clearly distinguish it from the rod isozyme and could account for some differences in cone and rod physiology.  相似文献   

13.
The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration.  相似文献   

14.
Cook TA  Ghomashchi F  Gelb MH  Florio SK  Beavo JA 《Biochemistry》2000,39(44):13516-13523
PDE6 (type 6 phosphodiesterase) from rod outer segments consists of two types of catalytic subunits, alpha and beta; two inhibitory gamma subunits; and one or more delta subunits found only on the soluble form of the enzyme. About 70% of the phosphodiesterase activity found in rod outer segments is membrane-bound, and is thought to be anchored to the membrane through C-terminal prenyl groups. The recombinant delta subunit has been shown to solubilize the membrane-bound form of the enzyme. This paper describes the site and mechanism of this interaction in more detail. In isolated rod outer segments, the delta subunit was found exclusively in the soluble fraction, and about 30% of it did not coimmunoprecipitate with the catalytic subunits. The delta subunit that was bound to the catalytic subunits dissociated slowly, with a half-life of about 3.5 h. To determine whether the site of this strong binding was the C-termini of the phosphodiesterase catalytic subunits, peptides corresponding to the C-terminal ends of the alpha and beta subunits were synthesized. Micromolar concentrations of these peptides blocked the phosphodiesterase/delta subunit interaction. Interestingly, this blockade only occurred if the peptides were both prenylated and methylated. These results suggested that a major site of interaction of the delta subunit is the methylated, prenylated C-terminus of the phosphodiesterase catalytic subunits. To determine whether the catalytic subunits of the full-length enzyme are methylated in situ when bound to the delta subunit, we labeled rod outer segments with a tritiated methyl donor. Soluble phosphodiesterase from these rod outer segments was more highly methylated (4.5 +/- 0.3-fold) than the membrane-bound phosphodiesterase, suggesting that the delta subunit bound preferentially to the methylated enzyme in the outer segment. Together these results suggest that the delta subunit/phosphodiesterase catalytic subunit interaction may be regulated by the C-terminal methylation of the catalytic subunits.  相似文献   

15.
Rod phosphodiesterase (PDE6) is the central effector enzyme in vertebrate visual transduction. Holo-PDE6 consists of two similar catalytic subunits (Palphabeta) and two identical inhibitory subunits (Pgamma). Palphabeta is the only heterodimer in the PDE superfamily, yet its significance for the function of PDE6 is poorly understood. An unequal interaction of Pgamma with Pbeta as compared with Palpha in the PDE6 complex has not been reported. We investigated the interaction interface between full-length Pgamma and Palphabeta, by differentiating Pgamma interaction with each individual Palphabeta subunit through radiolabel transfer from various positions throughout the entire Pgamma molecule. The efficiency of radiolabel transfer indicates that the close vicinity of serine 40 on Pgamma makes a major contribution to the interaction with Palphabeta. In addition, a striking asymmetry of interaction between the Pgamma polycationic region and the Palphabeta subunits was observed when the stoichiometry of Pgamma versus the Palphabeta dimer was below 2. Preferential photolabeling on Pbeta from Pgamma position 40 and on Palpha from position 30 increased while lowering the Pgamma/Palphabeta ratio, but diminished when the Pgamma/Palphabeta ratio was over 2. Our finding leads to the conclusion that two classes of Pgamma binding sites exist on Palphabeta, each composed of GAF domains in both Palpha and Pbeta, differing from the conventional models suggesting that each Pgamma binds only one of the Palphabeta catalytic subunits. This new model leads to insight into how the unique Palphabeta heterodimer contributes to the sophisticated regulation in visual transduction through interaction with Pgamma.  相似文献   

16.
17.
Mutations in the gene coding for AIPL1 cause Leber congenital amaurosis (LCA), a severe form of childhood blindness. The severity in disease is reflected in the complete loss of vision and rapid photoreceptor degeneration in the retinas of mice deficient in AIPL1. Our previous observations suggest that rod photoreceptor degeneration in retinas lacking AIPL1 is due to the massive reduction in levels of rod cGMP phosphodiesterase (PDE6) subunits (α, β, and γ). To date, the crucial link between AIPL1 and the stability of PDE6 subunits is not known. In this study using ex vivo pulse label analysis, we demonstrate that AIPL1 is not involved in the synthesis of PDE6 subunits. However, ex vivo pulse-chase analysis clearly shows that in the absence of AIPL1, rod PDE6 subunits are rapidly degraded by proteasomes. We further demonstrate that this rapid degradation of PDE6 is due to the essential role of AIPL1 in the proper assembly of synthesized individual PDE6 subunits. In addition, using a novel monoclonal antibody generated against AIPL1, we show that the catalytic subunit (α) of PDE6 associates with AIPL1 in retinal extracts. Our studies establish that AIPL1 interacts with the catalytic subunit (α) of PDE6 and is needed for the proper assembly of functional rod PDE6 subunits.  相似文献   

18.
A substantial fraction (20-30%) of the bovine rod outer segment phosphodiesterase (PDE) activity is not associated with outer segment membranes prepared with buffers of moderate ionic strength; this PDE activity appears to represent a distinct, soluble isozyme. Although this PDE isozyme can be demonstrated to be present in sealed rod outer segments, it is discarded from most standard rod outer segment preparations. A method was developed that allowed the rapid purification of the soluble rod PDE by 2600-fold, to apparent homogeneity, using a monoclonal antibody column (ROS-1a). The soluble rod PDE isozyme has a novel Mr = 15,000 subunit (delta) in addition to subunits of Mr = 88,000 (alpha sol), 84,000 (beta sol), and 11,000 (gamma sol). The delta subunit comigrates with and may be identical to the cone PDE 15-kDa subunit. The small subunits of the soluble rod PDE and the membrane-associated rod PDE were isolated by reverse-phase chromatography. The gamma sol subunit was a potent inhibitor of trypsin-activated rod PDE, inhibiting 50% of 1 pM PDE activity at a concentration of 11 pM. This concentration was similar to that observed for the gamma subunit of the membrane-associated rod PDE. The purified delta subunit did not appear to affect PDE activity; this subunit was, however, unusually difficult to keep in solution. All of the kinetic and physical properties of the soluble rod PDE tested thus far are similar to those of the membrane-associated form, except for the presence of the delta subunit, suggesting that this unique subunit could mediate the solubility of the soluble rod PDE and the cone PDE in the intact photoreceptor.  相似文献   

19.
Rod cGMP phosphodiesterase 6 (PDE6) is a key enzyme of the phototransduction cascade, consisting of PDE6α, PDE6β, and two regulatory PDE6γ subunits. PDE6 is membrane associated through isoprenyl membrane anchors attached to the C-termini of PDE6α and PDE6β and can form a complex with prenyl-binding protein δ (PrBP/δ), an isoprenyl-binding protein that is highly expressed in photoreceptors. The stoichiometry of PDE6-PrBP/δ binding and the mechanism by which the PDE6-PrBP/δ complex assembles have not been fully characterized, and the location of regulatory PDE6γ subunits within the protein assembly has not been elucidated. To clarify these questions, we have developed a rapid purification method for PDE6-PrBP/δ from bovine rod outer segments utilizing recombinant PrBP/δ. Transmission electron microscopy of negatively stained samples revealed the location of PrBP/δ and, thus, where the carboxyl-termini of PDE6α and PDE6β must be located. The three-dimensional structure of the PDE6αβγ complex was determined up to 18 Å resolution from single-particle projections and was interpreted by model building to identify the probable location of isoprenylation, PDE6γ subunits, and catalytic sites.  相似文献   

20.
《Journal of molecular biology》2019,431(19):3677-3689
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ–cGMP, Pαβγ2, and Pαβγ2–cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号