首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-situ estimates of fast-ice algal productivity at Cape Evans, McMurdo Sound, in 1999 were lower than at the same site in previous years. Under-ice irradiance was between 0 and 8 µmol photons m-2 s-1; the ice was between 1.9 and 2.0 m thick and the algal biomass averaged 150 mg chl a m-2, although values as high as 378 mg chl a m-2 were recorded. Production on 11 and 12 November was between 0.053 and 1.474 mg C m-2 h-1. When the data from 11 November were fitted to a hyperbolic tangent function, a multilinear regression gave estimates for Pmax of 0.571 nmol O2 cm-2 s-1, an ! of 0.167 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1 and an Ek of 3.419 µmol photons m-2 s-1. A Pmax of 2.674 nmol O2 cm-2 s-1, an ! of 0.275 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1, r of 0.305 nmol O2 cm-2 s-1 and an Ek of 9.724 µmol-1 photons m-2 s-1 were estimated from the 12 November data. The sea-ice algal community was principally comprised of Nitzschia stellata, Entomoneis kjellmanii and Berkeleya adeliensis. Other taxa present included N. lecointei, Fragilariopsis spp., Navicula glaciei, Pleurosigma spp. and Amphora spp. Variations in the method for estimating the thickness of the diffusive boundary layer were not found to significantly affect the measurements of oxygen flux. However, the inability to accurately measure fine-scale variations in biomass is thought to contribute to the scatter of the P versus E data.  相似文献   

2.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

3.
4.
The nucleocapsid protein (NCP) from Mason-Pfizer monkey virus (MPMV) contains two evolutionary invariant Cys-X2-Cys-X4-His-X4-Cys retroviral-type zinc finger structures, where the Cys and His residues provide ligands to a tetrahedrally coordinated Zn(II) ion. The N-terminal zinc finger (F1) of NCP from MPMV contains an immediately contiguous Cys in the -1 position relative to the start of this conserved motif: Cys-Cys-X2-Cys-X4-His-X4-Cys. Metal complexes of 18-amino acid peptides which model the native zinc finger sequence, SER-Cys-X2-Cys-X4-His-X4-Cys (F1_SC), and non-native Cys-SER-X2-Cys-X4-His-X4-Cys (F1_CS) and SER-SER-X2-Cys-X4-His-X4-Cys (F1_SS) sequences have been spectroscopically characterized and compared to the native two-zinc-finger protein fragment, MPMV NCP 21-80. All Co(II)-substituted peptide complexes adopt tetrahedral ligand geometries and have S-MCo(II) ligand-to-metal charge-transfer (LMCT) transition intensities consistent with three Co(II)-S bonds for F1_SC and F1_CS. The non-native F1_CS peptide binds Co(II) with KCo=1.5᎒6 M-1, comparable to that of the native complex, and 걄-fold tighter than F1_SS. Like the Co(II) derivative, the absorption spectrum of Ni(II)-substituted NCP 21-80 is most consistent with tetrahedral Ni(II) complexes with multiple thiolate donors. In contrast, Ni(II) complexes of F1_SC and F1_CS exhibit a single absorption band in the 400-550 nm region ()겨-300 M-1 cm-1), distinct in the two complexes, assignable to a degenerate d-d transition envelope characteristic of non-native square-planar coordination geometry, and an intense LMCT transition in the UV ()255ᄾ,000 M-1 cm-1). Cd(II) complexes have intense absorption in the UV (5max=233 nm), with absolute intensities consistent with 񬩈 M-1 cm-1 per Cd(II)-S bond. 113Cd NMR spectroscopy of 113Cd MPMV NCP gives '=649 ppm, consistent with S3N coordination. Co(II) and Cd(II) complexes of non-native F1_CS peptides are more sensitive to oxidation by O2, relative to F1_SC, suggestive of a higher lability in the non-native chelate. The implications of these findings for the evolutionary conservation of this motif are discussed.  相似文献   

5.
Wastewater generated in the elaboration of table olives has been treated using activated sludge from a municipal wastewater plant after adequate acclimation. To avoid bactericide properties of some chemical structures present in this type of effluents, synthetic urban wastewater has been used to dilute the original wastewater. The main parameters affecting efficiency of biological processes have been studied. Thus, initial biomass concentration, temperature up to 303 K (upper working temperature limit = 313 K) and initial substrate concentration exerted a positive influence on COD degradation rate. The optimum pH was found to be around 7, experiencing a slight inhibition on cell activity at pH 4. Under the experimental conditions investigated other parameters like polyphenol content, absorbance at 254 nm and total organic carbon were also reduced to some extent. Only nitrates amount was increased after the biological process took place. A kinetic model based on Monod equation was proposed and applied to experimental results. The maximum specific growth rate was calculated by means of the aforementioned kinetic model. The value of this parameter as a function of temperature was fitted to an Arrhenius expression, wmax = 9.43 2 1010 exp(72021/RT) hу (R in J molу Kу283 K < T < 303 K, pH , 7-10).  相似文献   

6.
Summary Three Lactococcus strains (Lactococcus ssp. lactis var. diacetylactis, Lactococcus ssp. lactis cremoris and Lactococcus ssp. lactis var. lactis) isolated from the Tunisian lben were grown at constant pH on CSL medium in stirred fermentors for lactic starters production. The agitation required to homogenate alkali used to pH control should be low because it affects the Lactococcus growth. Scale up from 20-liter fermentor to 400-liter fermentor was carried out at constant impeller tip speed below 150 cm sу. The CSL supplementation and fed-batch with glucose increased the yield in the upper 1010 cfu/ml. The consumed glucose during fermentation was converted into lactic acid and cell. Before fed-batch, the maximum specific growth rate of Lactococcus ssp. lactis var. diacetylactis was around 1 hу and the number of cells increased 20 to 40 times according to inoculum size. After fed-batch, the glucose consumption rate remains constant but specific growth rate decreased and number of cell trebled only.  相似文献   

7.
Yarrowia lipolytica KCCM50506, which transforms isobutyric acid to L-#-hydroxy isobutyric acid (L-#-HIBA), was screened. Chemostat cultures were carried out in jar fermentors at dilution rates of 0.02 hу to 0.12 hу. L-#-HIBA fermentation-regulating factors were determined to be specific growth rate, and concentrations of glucose and isobutyric acid in fermentor from analysis of steady-state data. The specific productivity of L-#-HIBA increased as the specific growth rate increased, apparently as a growth-associated type of product formation. A fed-batch culture was carried out under optimum conditions where the concentrations of glucose and isobutyric acid in the fermentor were maintained at 23 g lу and 9 g lу, respectively. The concentrations of cells and L-#-HIBA obtained at the end of fermentation were 20 g lу and 49 g lу, respectively, corresponding to 2.0 and 2.7 times more than concentrations in batch culture.  相似文献   

8.
Previous work has shown that orientated fibrous fibronectin-based materials can be useful in tissue repair and tissue engineering. The aim here was to characterise the basic material properties of a comparable orientated fibronectin-rich aggregate which is amenable to large scale production. Fine protein cables, diameter 150–200?μm, consisting of both fibronectin and fibrinogen in an approximately 2:1 molar ratio may be drawn from a cryoprecipitate-derived protein solution. The composition of the cables was found to depend on the ratio of the two proteins in the starting solution. The cable formation was associated with a reduction in the pH of the solution to between 4.0 and 4.5. Scanning electron microscopy of the cables showed that each one was composed of micron-diameter fibrils giving the material ultrastructural orientation. The cables possess moderate tensile strength (61?N/mm2) and displayed hygroscopic properties. Due to their natural composition, strict fibre alignment and the cell adhesive properties of fibronectin these cables form an effective template to orientate cells during tissue repair. Their properties and method of formation show promise for the scale-up of production.  相似文献   

9.
The mixing behaviour of the liquid phase in concentric-tube airlift bioreactors of different scale (RIMP: VL=0.070 m3; RIS-1: VL=2.50 m3; RIS-2: VL=5.20 m3) in terms of mixing time was investigated. This mixing parameter was determined from the output curves to an initial Dirac pulse, using the classical tracer response technique, and analyzed in relation to process and geometrical parameters, such as: gas superficial velocity, xSGR; top clearance, hS; bottom clearance, hB, and ratio of the resistances at downcomer entrance, Ad/AR. A correlation between the mixing time and the specified operating and geometrical parameters was developed, which was particularized for two flow regimes: bubbly and transition (xSGRА.08 m/s) and churn turbulent flow (xSGR> 0.08 m/s) respectively. The correlation was applied in bioreactors of different scale with a maximum error of ᆲ%.  相似文献   

10.
A system for the production of transgenic plants has been developed for the Liliaceous ornamental plant Muscari armeniacum Leichtl. ex Bak via Agrobacterium-mediated transformation of embryogenic cultures. Leaf-derived embryogenic cultures were co-cultivated with each of three A. tumefaciens strains, all of which harbored the binary vector carrying the neomycin phosphotransferase II (nptII), hygromycin phosphotransferase (hpt) and intron-containing #-glucuronidase (gus-intron) genes in the T-DNA region. Following co-cultivation, the embryogenic cultures were cultured on a medium containing 500 mg l-1 cefotaxime for 1 week followed by a medium containing 75 mg l-1 hygromycin in addition to cefotaxime. After 4-5 weeks, several hygromycin-resistant (Hygr) cell clusters were produced from the co-cultivated embryogenic cultures. The highest efficiency of production of Hygr cell clusters was obtained when embryogenic cultures were inoculated with A. tumefaciens EHA101/pIG121Hm in the presence of 100 µM acetosyringone (AS) and 0.1% (v/v) of a surfactant (Tween20) followed by co-cultivation in the presence of 100 µM AS. Hygr embryogenic cultures developed into complete plants via somatic embryogenesis, and most of them were verified to be transgenic by GUS histochemical assay and polymerase chain reaction analysis. Southern blot analysis revealed the integration of one to five copies of the transgene into the genome of transgenic plants, but most of them had one or two copies.  相似文献   

11.
In Pb2+ accumulation by Aureobasidium pullulans, the time to reach an equilibrium state was not dependent on the initial cell dry weight. The Pb2+ accumulation capacity was increased from 56.9 to 215.6 mg Pb2+/g cell dry weight as the biomass was stored from 1 to 53 days, and correlated with the amount of excreted extracellular polymeric substances (EPS). It was observed that Pb2+ accumulated only on the surface of the intact cells of A. pullulans due to the existence of EPS, whereas Pb2+ penetrated into the inner cellular parts of the EPS-extracted cells.  相似文献   

12.
Na+-K+-Cl- cotransport and Na+/K+ATPase were studied by immunohistochemistry in the kidney and urinary bladder of Trematomus bernacchii and Chionodraco hamatus. The activity was correlated to the density of mitochondria. The first segment of the renal proximal tubule was more active than the second one. In T. bernacchii and the temperate marine teleost Pagellus bogaraveo, the immunoreactivity for the antibody to cotransporters and to the !-subunit of the sodium pump was stronger than in the icefish. This difference indicates in the kidney of the icefish, a weaker secretory activity, a consequent lower osmolarity in the lumen and lower water loss, which correlates well with the need for a greater blood volume in the icefish. The epithelium of the urinary bladder in T. bernacchii, where intense immunostaining was observed, was composed of columnar cells. In C. hamatus the columnar cells, where the immunostaining was weaker, lined only a portion of the urinary bladder, the other region being composed of cuboidal cells.  相似文献   

13.
Phytoplankton photosynthesis was measured during spring-summer 1991-1992 in the inner and outer part of the shallow Potter Cove, King George Island. Strong winds characterise this area. Wind-induced turbulent mixing was quantified by means of the root-mean square expected vertical displacement depth of cells in the water column, Zt. The light attenuation coefficient was used as a measure of the influence of the large amount of terrigenous particles usually present in the water column; 1% light penetration ranged between 30 and 9 m, and between 30 and 15 m for the inner and outer cove, respectively. Obvious differences between photosynthetic capacity [P*max; averages 2.6 and 0.6 µg C (µg chlorophyll-a)-1 h-1] and photosynthetic efficiency {!*; 0.073 and 0.0018 µg C (µg chlorophyll-a)-1 h-1 [(µmol m-2 s-1)-1]} values were obtained for both sites during low mixing conditions (Zt from 10 to 20 m), while no differences were found for high mixing situations (Zt>20 m). This suggests different photoacclimation of phytoplankton responses, induced by modifications of the light field, which in turn are controlled by physical forcing. Our results suggest that although in experimental work P*max can be high, wind-induced mixing and low irradiance will prevent profuse phytoplankton development in the area.  相似文献   

14.
Qm mutant phage 5 is deficient in the synthesis of the proteins involved in cell lysis and 5 DNA packaging. As a result, the replicated Qm 5 DNA containing a cloned gene is not easily coated by a phage head and remains naked for the ample expression of the cloned gene, and also the host cells do not lyse easily and larger amounts of cloned gene products are produced. In a two-phase operation, the first phase is operated at a low temperature to keep the phage in the lysogenic state for cell growth and cloned gene stability, while the second phase is operated at a high temperature to induce the lytic state for the amplification of the cloned gene and overproduction of its product. This two-phase operation was optimized by determining both the optimal temperatures for the growth and production phases and the optimal switching time between the growth to the production phase. The optimal temperatures for growth and production phases were 33 and 40 °C, respectively. The optimal switching time was 3 h. The recombinant #-galactosidase production using this optimal process was about 20 times higher than in the single-copy lysogenic state.  相似文献   

15.
Commercial culturing of mammalian cell lines is increasing in importance as more biological products unique to mammals are being produced in genetically altered mammalian cells. Most mammalian cells are anchorage dependent, so they must be cultured on a support matrix. This limitation, along with the requirement of a low shear environment, severely effects the scale-up of bench-scale culture systems. The need to culture mammalian cells on a support matrix limits the increase in cell population to a factor of 10-20 before growth virtually stops due to contact inhibition. Commercial culturing systems for anchorage dependent cells are batch processes because of the combination of contact inhibition and support matrix requirements. Development of a continuous bioreactor system could allow both unlimited scale-up and continuous cell-mass production. To design a continuous reactor, a mathematical model to predict the reactor performance should be developed. This paper addresses the development of a mathematical model for predicting continuous bioreactor performance. It was found that anchorage dependent C2C12 mouse myoblast cells, a continuous cell line, followed Monod kinetics for glucose consumption and cell mass production in batch flask experiments, with wmax = 0.040 hrу and Km = 2.5 mM. Furthermore, it was found that these parameters could be used to predict the glucose consumption in a continuous bioreactor operated with constant feed of seeded microcarriers operated at two different residence times. The success of this model implies the possibility of developing a continuous cell harvesting and reinoculation system using a microcarrier bioreactor to produce cell mass.  相似文献   

16.
A tapetum-specific cDNA encoded by a rice gene, RA39, was isolated by cDNA subtractive hybridization, differential screening and rapid amplification of cDNA ends. RA39 is a single-copy gene in the rice genome. mRNA in situ hybridization indicates that this gene is a tapetum-specific gene, and highly expressed in the tapetal cells at the meiosis and tetrad stages. The RA39 cDNA is 1,013 bp in length with an open reading frame encoding 298 amino acid residues. This cDNA sequence does not show significant homology to any known sequences in GenBank databases, but its deduced amino acid sequence (RA39) has between 19 and 34% sequence identity to ribosome-inactivating proteins (RIPs). Optimal alignment reveals that the five amino acid residues constituting the active site of the ricin A-chain (Tyr80, Tyr123, Glu177, Arg180 and Trp211), which are invariant among all RIPs published to date, are conserved in RA39. Recombinant RA39 protein expressed in Escherichia coli was purified to homogeneity. The purified protein exhibits the RNA N-glycosidase activity of RIPs. This demonstrates that RIPs occur in the reproductive organs of rice. The possible function of RA39 in anther development is discussed.  相似文献   

17.
Water availability and carbon isotope discrimination in conifers   总被引:22,自引:0,他引:22  
The stable C isotope composition ('13C) of leaf and wood tissue has been used as an index of water availability at both the species and landscape level. However, the generality of this relationship across species has received little attention. We compiled literature data for a range of conifers and examined relationships among landscape and environmental variables (altitude, precipitation, evaporation) and '13C. A significant component of the variation in '13C was related to altitude (discrimination decreased with altitude in stemwood, 2.53‰ km-1 altitude, r2=0.49, and in foliage, 1.91‰ km-1, r2=0.42), as has been noted previously. The decrease in discrimination with altitude was such that the gradient in CO2 partial pressure into the leaf (Pa-Pi) and altitude were generally unrelated. The ratio of precipitation to evaporation (P/E) explained significant variation in Pa-Pi of stemwood (r2=0.45) and foliage (r2=0.27), but only at low (<0.8) P/E. At greater P/E there was little or no relationship, and other influences on '13C probably dominated the effect of water availability. We also examined the relationship between plant drought stress (O) and '13C within annual rings of stemwood from Pinus radiata and Pinus pinaster in south-western Australia. Differential thinning and fertiliser application produced large differences in the availability of water, nutrients and light to individual trees. At a density of 750 stems ha-1, O and '13C were less (more negative) than at 250 stems ha-1 indicating greater drought stress and less efficient water use, contrary to what was expected in light of the general relationship between discrimination and P/E. The greater '13C of trees from heavily thinned plots may well be related to an increased interception of radiation by individual trees and greater concentrations of nutrients in foliage - attributes that increase rates of photosynthesis, reduce Pi and increase '13C. '13C was thus modified to a greater extent by interception of radiation and by nutrient concentrations than by water availability and the '13C-O relationship varied between thinning treatments. Within treatments, the relationship between '13C and O was strong (0.38<r2<0.58). We conclude that '13C may well be a useful indicator of water availability or drought stress, but only in seasonally dry climates (P/E<1) and where variation in other environmental factors can be accounted for.  相似文献   

18.
Central composite design was used to determine the optimal levels of microbiological parameters, viz., slant age, seed age and inoculum level, for enhanced griseofulvin production by Penicillium griseofulvum MTCC 1898 and Penicillium griseofulvum MTCC 2004 in shake flask fermentation. The optimal levels of slant age, seed age and inoculum level for Penicillium griseofulvum MTCC 1898 were found to be 8.8772 days, 4.2093 days, 12% (v/v) (᷁.56 kg dry cell mass/m3) and for Penicillium griseofulvum MTCC 2004, 8.221 days, 3.4875 days and 9% (v/v) (̀.09 kg dry cell mass/m3) respectively. The yield of griseofulvin under optimal conditions was found to be 1.65 times for Penicillium griseofulvum MTCC 1898 and 1.07 times for Penicillium griseofulvum MTCC 2004 higher than that obtained using unoptimized conditions. The fermentation time for maximum production of griseofulvin by Penicillium griseofulvum MTCC 1898 and Penicillium griseofulvum MTCC 2004 decreased by 4 days and 2 days respectively.  相似文献   

19.
A recombinant strain of Saccharomyces cerevisiae harboring GOD gene originated from Aspergillus niger was used for the production of extracellular glucose oxidase. The effect of continuous galactose feeding on the induction of GAL-10 promoter was examined in a 5 l bioreactor. The highest enzyme production level (164 U cmх) was achieved at 96 h of cultivation. The production performance was compared with the results of fed-batch cultivations carried out in the same laboratory. Continuous feeding mode was found to be less productive due to excess ethanol formation and plasmid instability.  相似文献   

20.
Bacterial biomass and functional diversity in four marine and four freshwater samples, collected from Resolute Bay, Nunavut, Canada, were studied using fluorescent nucleic-acid staining and sole-carbon-source utilization. Viable microbial counts using the LIVE/DEAD BacLight Viability Kit estimated viable marine bacterial numbers from 0.7 to 1.8᎒6 cells/l, which were lower than viable bacterial numbers in freshwater samples (2.1-9.9᎒6 cells/l) (RCBD-ANOVA). Calculations of the Shannon-Wiener diversity index and average well colour development were based on substrate utilization in ECO-Biolog plates incubated at 4°C and 20°C for 38 and 24 days, respectively. The Shannon-Wiener diversity of the marine water samples was significantly greater ( x H'=2.40ǂ.08, P <0.005; RCBD-ANOVA) than that of freshwater samples ( x H'=1.20ǂ.00, P <0.005; RCBD-ANOVA). Differences in microbial diversity between fresh and marine water samples at 4°C ( x 4°C =2.01) and 20°C (x20°C =2.31) were also detected by RCBD-ANOVA analysis. Interactions between water type and incubation temperature were not significant ( F =1.926, F c=5.12). Principal component analysis revealed differences in metabolic substrate utilization patterns and, consequently, the microbial diversity between water types and samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号