首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A gene, dsrT, encoding a dextransucrase-like protein was isolated from the genomic DNA libraries of Leuconostoc mesenteroides NRRL B-512F dextransucrase-like gene. The gene was similar to the intact open reading frames of the dextransucrase gene dsrS of L. mesenteroides NRRL B-512F, dextransucrase genes of strain NRRL B-1299 and streptococcal glucosyltransferase genes, but was truncated after the catalytic domain, apparently by the deletion of five nucleotides. dsrT mRNA was produced in this strain L. mesenteroides when cells were grown in a sucrose medum, but at a level of 20% of that of dsrS mRNA. The molecular weight of the dsrT gene product was 150,000 by SDS-PAGE. The product did not synthesize dextran, but had weak sucrose cleaving activity. The insertion of five nucleotides at the putative deletion point in dsrT resulted in an enzyme with a molecular weight of 210,000 and with dextransucrase activity.  相似文献   

2.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   

3.
The extracellular glycosyltransferases from Streptococcus mutans FA1 were purified by using the following procedures: ammonium sulfate precipitation, poly-(acrylamide) gel filtration, DEAE-cellulose chromatography, and agarose-gel filtration. The dextransucrase and levansucrase activities were purified 350- and 500-fold, repsectively, and the ratio of the two activities remained almost constant throughout the purification. Both enzymes have a pH optimum of 6.0, a Km for sucrose of 55mM, and isoelectric points of 3.7 and 4.6. The enzymes are inactivated by repeated freezing and thawing, but retain partial activity even after heating at 100 degrees. The enzyme preparation contains a carbohydrate moiety which does not appear to be either bound levan or dextran.  相似文献   

4.
Leuconostoc mesenteroides B-512FMC, a constitutive mutant for dextransucrase, was grown on glucose, fructose, or sucrose. The amount of cell-associated dextransucrase was about the same for the three sugars at different concentrations (0.6% and 3%). Enzyme produced in glucose medium was adsorbed on Sephadex G-100 and G-200, but much less enzyme was adsorbed when it was produced in sucrose medium. Sephadex adsorption decreased when the glucose-produced enzyme was preincubated with dextrans of molecular size greater than 10 kDa. The release of dextransucrase activity from Sephadex by buffer (20 mM acetate, pH 5.2) was the highest at 28°–30°C. The addition of dextran to the enzyme stimulated dextran synthesis but had very little effect on the temperature or pH stability. Dextransucrase purified by ammonium sulfate precipitation, hydroxyapatite chromatography, and Sephadex G-200 adsorption did not contain any carbohydrate, and it synthesized dextran, showing that primers are not necessary to initiate dextran synthesis. The purified enzyme had a molecular size of 184 kDa on SDS-PAGE. On standing at 4°C for 30 days, the native enzyme was dissociated into three inactive proteins of 65, 62, and 57 kDa. However, two protein bands of 63 and 59 kDa were obtained on SDS-PAGE after heat denaturation of the 184-kDa active enzyme at 100°C. The amount of 63-kDa protein was about twice that of 59-kDa protein. The native enzyme is believed to be a trimer of two 63-kDa and one 59-kDa monomers.  相似文献   

5.
Various dextransucrase molecular mass forms found in enzyme preparations may sometimes be products of proteolytic activity. Extracellular protease in Leuconostoc mesenteroides strains NRRL B-512F and B-512FMC dextransucrase preparations was identified. Protease had a molecular mass of 30 kDa and was the predominant form derived from a high molecular mass precursor. The production and activity of protease in culture medium was strongly dependent on pH. When L. mesenteroides dextransucrase (173 kDa) was hydrolyzed by protease, at pH 7 and 37 degrees C, various dextransucrase forms with molecular masses as low as 120 kDa conserving dextransucrase activity were obtained.  相似文献   

6.
《Process Biochemistry》2014,49(5):783-790
In the present work we describe an enzymatic production method to obtain β2-6 fructose oligosaccharides (levan-type FOS) through a sequential reaction in which a bacterial endolevanase is applied to levan produced from sucrose by bacterial levansucrases. A putative gene encoding an endolevanase, designated as LevBl, was identified through a bioinformatics search, isolated from a strain of Bacillus licheniformis IBt1 from our own collection and expressed in Escherichia coli. LevB1 showed a specific activity of 1.8 U/mg protein at 35 °C in 50 mM phosphate buffer pH 6.0. A first order kinetic behavior was found when up to 150 g/L of low molecular weight levan (8.3 kDa) was used as the substrate. The product profile was determined by HPAEC-PAD and consisted of levan-type FOS with a polymerization degree between 2 and 8, with levanbiose as the major product after long reaction times. Yields of 97% of levan-type FOS were obtained when 1.0 U/mL of LevB1 reacted with 100 g/L of levan produced by the levansucrase from Bacillus subtilis. Finally, it was observed that levan-type FOS are efficiently fermented by probiotic lactic acid bacteria.  相似文献   

7.
A newly isolated thermophilic bacterial strain from Tunisian thermal source was identified as Bacillus sp. and was selected for its ability to produce extracellular levansucrase. Following the optimization of carbon source, nitrogen source, temperature and initial pH of the growth medium in submerged liquid cultures. In fact, sucrose was found to be a good inducer of levansucrase enzymes. The optimal temperature and pH of the levansucrase were 50°C and 6.5, respectively and its activity increased four folds in the presence of 50mM Fe(2+). This enzyme exhibited a remarkable stability and retained 100% of its original activity at 50°C for more than 1h at pH 6.5. The half-life of the enzyme was 1h at 90°C. Crude enzyme of Bacillus sp. rich in levansucrase was established for the synthesis of fructooligosaccharides and levan. Bacillus sp. could therefore be considered as a satisfactory and promising producer of thermostable levansucrases. Contrary to other levansucrases, the one presented in the current study was able to produce high levels of levan with high molecular weight at 50°C and having an important effect as a hypoglycemic agent which was demonstrated in our previous publications (Dahech et al., 2011 [25]) and as a hypo-cholesterolemic agent which will be investigated in further research.  相似文献   

8.
Bacillus subtilis NRC33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30°C. The effect of different nitrogen sources showed that baker’s yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO4 was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1000 μg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30°C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.  相似文献   

9.
Zhang H  Hu Y  Zhu C  Zhu B  Wang Y 《Biotechnology letters》2008,30(8):1441-1446
The gene dexYG encoding the dextransucrase from an industrial strain of Leuconostoc mesenteroides 0326 was isolated by PCR. The nucleotide sequence of the dexYG gene consists of an open reading frame (ORF) of 4,584 bp, coding for a 1,527 aa protein with a Mr of 170 kDa. The results were analysed by a BLAST similarity search of the GenBank database, which revealed the amino acid sequence was similiar to dsrD derived from L. mesenteroides Lcc4. The dexYG gene was subcloned into the plasmid pET28a(+) and was expressed in E. coli BL21 (DE3) by IPTG induction. The pH value was one of the main reasons which caused the degradation of enzyme activity in the later stage of induction. The highest activity was reached 36 U/ml after 5 h induction in medium at pH 6.0. Biotransformation yield of the enzyme reached 65% and the molecular weight of transformed dextran was more than 68 kDa in 2 h.  相似文献   

10.
Levansucrase of Zymomonas mobilis was immobilized onto the surface of hydroxyapatite by ionic binding. Optimum conditions for the immobilization were: pH 6.0, 4 h of immobilization reaction time, and 20 U of enzyme/g of matrix. The enzymatic and biochemical properties of the immobilized enzyme were similar to those of the native enzyme, especially towards the effect of salts and detergents. The immobilized enzyme showed sucrose hydrolysis activity higher as that of the native enzyme, but levan formation activity was 70% of the native enzyme. HPLC analysis of levan produced by immobilized enzyme showed the presence of two different types of levan: high-molecular-weight levan and low-molecular-weight levan. The proportion of low-molecular-weight levan to total levan produced by the immobilized enzyme was much higher than that with the native enzyme, indicating that immobilized levansucrase could be applied to produce low-molecular-weight levan. Immobilized levansucrase retained 65% of the original activity after 6 times of repeated uses and 67% of the initial activity after 40 d when stored at 4 °C.  相似文献   

11.
The characteristics of levan formation by different preparations of levansucrase (free and immobilized enzyme and toluene-permeabilized whole cells), derived from recombinant levansucrase from Zymomonas mobilis expressed in Escherichia coli, were investigated. The maximal yield of levan by the three preparations were similar and were about 70–80% on a fructose-released basis with sucrose as nutrient at 100 g l–1. Immobilized enzyme and toluene-permeabilized whole cells produced low molecular weight levan (2–3 × 106), as determined by HPLC while high molecular weight levan (>6 × 106) was the major product with the free levansucrase. The size of levan can thus be controlled by immobilized levansucrase and toluene-permeabilized whole cells in high yield.  相似文献   

12.
Bacillus circulans was able to produce extracellular levansucrase using sucrose as carbon source optimally at 35°C. The enzymic synthesis of levan and fructo-oligosaccharides was studied using a 50% ethanol fraction of crude extract. The molecular weight of the synthesized levan was markedly affected by sucrose concentration, the molecular weight of levan decreased with increased sucrose concentration up to 32% whereby fructo-oligosaccharides were isolated. Temperature and the reaction time clearly affected the conversion of fructose to levan with molecular weight values ranging from 10 to 38 kDa. Identification of levan indicated that fructose was the building unit of the levan obtained. Thermal and pH stabilities of B. circulans levansucrase could be improved by enzyme glycosylation using sodium metaperiodate treatment. Chemical modification provides additional points of attachment of the enzyme to the support which offered the modified enzyme greater stabilization than did the free enzyme. The modified enzyme exhibited thermal tolerance up to 50°C, where it retained 88.25% of its activity, while the free enzyme only retained 64.55% of its original activity. The half-life significantly increased from 130 min for the free enzyme to 347 min for the modified enzyme at 50°C, however, it increased from 103 min for the free enzyme to 210 min for the modified enzyme at 60°C. Other properties i.e., the response to some metal ions as well as the ability to convert higher substrate levels and tolerance to an extension of the reaction periods were also improved upon modification. Obviously, the results obtained outlined the conditions leading to the formation of important high or low molecular weight or levan and fructo-oligosaccharides suitable for different industrial applications.  相似文献   

13.
Exopolysaccharides (EPS) produced in situ by sourdough lactobacilli affect rheological properties of dough as well as bread quality and may serve as prebiotics. The aim of this study was to characterize EPS-formation by Lactobacillus sanfranciscensis TMW 1.392 at the molecular level. A levansucrase gene from L. sanfranciscensis TMW 1.392 encompassing 2,300 bp was sequenced. This levansucrase is predicted to be a cell-wall associated protein of 879 amino acids with a relative molecular weight (MR) of 90,000. The levansucrase gene was heterologously expressed in Escherichia coli and purified to homogeneity. The recombinant enzyme exhibited transferase and hydrolase activities and produced glucose, fructose, 1-kestose and levan from sucrose; truncation of the N-terminal domain did not affect catalytic activity. Kestose formation was enhanced relative to fructose and levan formation by low temperature or high sucrose levels. During growth in wheat doughs, strain TMW 1.392 utilized sucrose to form fructose, 1-kestose, and fructan, whereas a levansucrase deletion mutant, L. sanfranciscensis TMW 1392lev, lost the ability to hydrolyze sucrose, and did not produce fructan or 1-kestose. These results indicate that, in L. sanfranciscensis TMW 1.392, sucrose metabolism and formation of fructan and 1-kestose is dependent on the activity of a single enzyme, levansucrase.  相似文献   

14.
《Process Biochemistry》2014,49(9):1503-1510
This work disclosed the broad transglycosylation capability of the levansucrase from Bacillus licheniformis 8-37-0-1 for the first time. The levansucrase was firstly purified from the strain 8-37-0-1 and found to be a monomer of ∼51 kDa with KETQDYKKSY as the N-terminus. Then, the gene encoding the enzyme was cloned and it contained an ORF of 1449 nucleotides, encoding a 482 amino-acid protein with a predicted 29 amino-acid signal peptide. The deduced mature protein without the signal showed the same N-terminus to the purified enzyme. The mature enzyme was subsequently expressed in Escherichia coli. The recombinant enzyme showed similar biochemical properties to the native one. It produced maximal yield of 7.1 mg/mL levan (Mr 9.6 × 106) from 0.8 M sucrose (pH 6.5) at 40 °C for 24 h in vitro. When using sucrose as the donor, the enzyme displayed a wide range of acceptor specificity and was able to transfer fructosyl to a series of sugar acceptors including hexose, pentose, β- or α-disaccharides, along with the difficult branched alcohols that have not been investigated before. Chemical structures of the resultant products were analyzed by MS and NMR spectra.  相似文献   

15.
Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.  相似文献   

16.
An investigation was conducted to isolate, and characterise the extracellular sucrases of Zymomonas mobilis UQM 2716. Levansucrase (EC 2.4.1.10) was the only extracellular sucrase produced by this organism. This enzyme was responsible for sucrose hydrolysis, levan formation, and oligosaccharide production. It had a molecular mass of 98 kDa, a Michaelis constant (K m) of 64 mm, and a pH optimum of 5.5. It was inhibited by glucose, but not by fructose, ethanol, sorbitol, NaCl, TRIS or ethylenediaminetetraacetic acid (EDTA). The formation of levan was the principal reaction catalysed by this enzyme at low temperatures. However, levan formation was thermolabile, being irreversibly lost when levansucrase was heated to 35°C. S This did not effect sucrose hydrolysis or oligosaccharide formation, which were optimal at 45°C. Sucrose concentration greatly influenced the type of acceptor molecule used in the transfructosylation reactions catalysed by levansucrase. At low sucrose concentration, the predominant reaction catalysed was the hydrolysis of sucrose to free glucose and fructose. At high sucrose concentrations, oligosaccharide production was the major reaction catalysed.  相似文献   

17.
Summary A genetically modified levansucrase, which contained His-affinity tag in its C-terminal, was constructed by PCR reaction using two synthetic primers. This modified protein was produced up to 30 % in total cell protein of E. coli, and was purified by a one-step affinity chromatography. The optimum pH for levan production was pH 5 and the optimum temperature was 0 °C. The higher velocity of levan formation within shorter enzyme reaction times was achieved by increasing the levels of enzyme concentration. The optimal sucrose concentration for levan production was around 20 %. Under these conditions, more than 50 g levan/l was produced.  相似文献   

18.
Initial rate kinetics of dextran synthesis by dextransucrase (sucrose:1,6-alpha-D-glucan-6-alpha-D-glucosyltransferase, EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F showed that below 1 mM, Ca2+ activated the enzyme by increasing Vmax and decreasing the Km for sucrose. Above 1 mM, Ca2+ was a weak competitive inhibitor (Ki = 59 mM). Although it was an activator at low concentration, Ca2+ was not required for dextran synthesis, either of main chain or branch linkages. Neither was it required for sucrose hydrolysis, acceptor reactions, or enzyme renaturation after SDS-polyacrylamide gel electrophoresis. A model for dextran synthesis is proposed in which dextransucrase has two Ca2+ sites, one activating and one inhibitory. Ca2+ at the inhibitory site prevents the binding of sucrose.  相似文献   

19.
The synthesis of levan using a levansucrase from a strain of Bacillus subtilis was studied in the presence of the water-miscible solvents: acetone, acetonitrile and 2-methyl-2-propanol (2M2P). It was found that while the enzyme activity is only slightly affected by acetone and acetonitrile, 2M2P has an activating effect increasing the total activity 35% in 40-50% (v/v) 2M2P solutions at 30 degrees C. The enzyme is highly stable in water at 30 degrees C; however, incubation in the presence of 15 and 50% (v/v) 2M2P reduced the half-life time to 23.6 and 1.8 days, respectively. This effect is reversed in 83% 2M2P, where a half-life time of 11.8 days is observed. The presence of 2M2P in the system increases the transfer/hydrolysis ratio of levansucrase. As the reaction proceeds with 10% (w/v) sucrose in 50/50 water/2M2P sucrose is converted to levan and an aqueous two-phase system (2M2P/Levan) is formed and more sucrose can be added in a fed batch mode. It is shown that high molecular weight levan is obtained as an hydrogel and may be easily recovered from the reaction medium. However, when high initial sucrose concentrations (40% (w/v) in 50/50 water/2M2P) are used, an aqueous two-phase system (2M2P/sucrose) is induce, where the synthesized levan has a similar molecular weight distribution as in water and remains in solution.  相似文献   

20.
One use of the periodic acid-Schiff (PAS) stain is to detect dextransucrase and levansucrase activities on polyacrylamide gels by staining their polysaccharide products, dextran and levan. When gels with heavy dextran or levan bands were PAS stained, proteins other than dextransucrase and levansucrase also were stained, and a high background developed during storage. The staining of proteins other than dextransucrase and levansucrase is caused by the diffusion of the periodate-oxidized carbohydrate before and after staining. This diffusion could be greatly slowed, and the staining artifact decreased, by following the PAS stain by a crosslinking treatment of the carbohydrate-dye complex. Protein staining artifacts could be prevented by using chymotrypsin to remove the protein from the gel at the stage after polysaccharide synthesis but before the PAS stain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号