首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A?(Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity?that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.  相似文献   

2.
3.
4.
5.
Oct4 links multiple epigenetic pathways to the pluripotency network   总被引:1,自引:0,他引:1  
Ding J  Xu H  Faiola F  Ma'ayan A  Wang J 《Cell research》2012,22(1):155-167
  相似文献   

6.
A core Klf circuitry regulates self-renewal of embryonic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Sox2 is a key factor in maintaining self-renewal of embryonic stem cells (ESCs) and adult stem cells as well as in reprogramming differentiated cells back into pluripotent or multipotent stem cells. Although previous studies have shown that Sox2 is phosphorylated in human ESCs, the biological significance of Sox2 phosphorylation in ESC maintenance and reprogramming has not been well understood. In this study we have identified new phosphorylation sites on Sox2 and have further demonstrated that Cdk2-mediated Sox2 phosphorylation at Ser-39 and Ser-253 is required for establishing the pluripotent state during reprogramming but is dispensable for ESC maintenance. Mass spectrometry analysis of purified Sox2 protein has identified new phosphorylation sites on two tyrosine and six serine/Threonine residues. Cdk2 physically interacts with Sox2 and phosphorylates Sox2 at Ser-39 and Ser-253 in vitro. Surprisingly, Sox2 phosphorylation at Ser-39 and Ser-253 is dispensable for ESC self-renewal and cell cycle progression. In addition, Sox2 phosphorylation enhances its ability to establish the pluripotent state during reprogramming by working with Oct4 and Klf4. Finally, Cdk2 can also modulate the ability of Oct4, Sox2, and Klf4 in reprogramming fibroblasts back into pluripotent stem cells. Therefore, this study has for the first time demonstrated that Sox2 phosphorylation by Cdk2 promotes the establishment but not the maintenance of the pluripotent state. It might also help explain why the inactivation of CDK inhibitors such as p53, p21, and Arf/Ink4 promotes the induction of pluripotent stem cells.  相似文献   

9.
10.
11.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency—including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras—were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1–2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.  相似文献   

12.
13.
14.
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is highly expressed in embryonic stem cells (ESCs) and its role in maintenance of pluripotency has been suggested previously. In epithelial cancer cells, activation of the EpCAM surface-to-nucleus signaling transduction pathway involves a number of membrane proteins. However, their role in somatic cell reprogramming is still unknown. Here we demonstrate that EpCAM and its associated protein, Cldn7, play a critical role in reprogramming. Quantitative RT-PCR analysis of Oct4, Sox2, Klf4, and c-Myc (OSKM) infected mouse embryonic fibroblasts (MEFs) indicated that EpCAM and Cldn7 were up-regulated during reprogramming. Analysis of numbers of alkaline phosphatase- and Nanog-positive clones, and the expression level of pluripotency-related genes demonstrated that inhibition of either EpCAM or Cldn7 expression resulted in impairment in reprogramming efficiency, whereas overexpression of EpCAM, EpCAM plus Cldn7, or EpCAM intercellular domain (EpICD) significantly enhanced reprogramming efficiency in MEFs. Furthermore, overexpression of EpCAM or EpICD significantly repressed the expression of p53 and p21 in the reprogramming MEFs, and both EpCAM and EpICD activated the promoter activity of Oct4. These observations suggest that EpCAM signaling may enhance reprogramming through up-regulation of Oct4 and possible suppression of the p53-p21 pathway. In vitro and in vivo characterization indicated that the EpCAM-reprogrammed iPSCs exhibited similar molecular and functional features to the mouse ESCs. In summary, our studies provide additional insight into the molecular mechanisms of reprogramming and suggest a more effective means of induced pluripotent stem cell generation.  相似文献   

15.
16.
17.
18.
Induced pluripotency requires the expression of defined factors and culture conditions that support the self-renewal of embryonic stem (ES) cells. Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3) with LIF (2i/LIF) provides an optimal culture environment for mouse ES cells and promotes transition to naive pluripotency in partially reprogrammed (pre-iPS) cells. Here we show that 2i/LIF treatment in clonal lines of pre-iPS cells results in the activation of endogenous Nanog and rapid downregulation of retroviral Oct4 expression. Nanog enables somatic cell reprogramming in serum-free medium supplemented with LIF, a culture condition which does not support induced pluripotency or the self-renewal of ES cells, and is sufficient to reprogram epiblast-derived stem cells to naive pluripotency in serum-free medium alone. Nanog also enhances reprogramming in cooperation with kinase inhibition or 5-aza-cytidine, a small molecule inhibitor of DNA methylation. These results highlight the capacity of Nanog to overcome multiple barriers to reprogramming and reveal a synergy between Nanog and chemical inhibitors that promote reprogramming. We conclude that Nanog induces pluripotency in minimal conditions. This provides a strategy for imposing naive pluripotency in mammalian cells independently of species-specific culture requirements.  相似文献   

19.
20.
Li Y  Zhang Q  Yin X  Yang W  Du Y  Hou P  Ge J  Liu C  Zhang W  Zhang X  Wu Y  Li H  Liu K  Wu C  Song Z  Zhao Y  Shi Y  Deng H 《Cell research》2011,21(1):196-204
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号