首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13sq198 mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13sq198, suggesting that the digestive organ defects observed in sec13sq198 are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13sq198 failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13sq198. Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13sq198. Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis.  相似文献   

2.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

3.
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2 , a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro . Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2 . We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.  相似文献   

4.
The COPII vesicle coat protein promotes the formation of endoplasmic reticulum- (ER) derived transport vesicles that carry secretory proteins to the Golgi complex in Saccharomyces cerevisiae. This coat protein consists of Sar1p, the Sec23p protein complex containing Sec23p and Sec24p, and the Sec13p protein complex containing Sec13p and a novel 150-kDa protein, p150. Here, we report the cloning and characterization of the p150 gene. p150 is encoded by an essential gene. Depletion of this protein in vivo blocks the exit of secretory proteins from the ER and causes an elaboration of ER membranes, indicating that p150 is encoded by a SEC gene. Additionally, overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1. p150 is encoded by SEC31, a gene isolated in a genetic screen for mutations that accumulate unprocessed forms of the secretory protein alpha-factor. The sec31-1 mutation was mapped by gap repair, and sequence analysis revealed an alanine to valine change at position 1239, near the carboxyl terminus. Sec31p is a phosphoprotein and treatment of the Sec31p-containing fraction with alkaline phosphatase results in a 50-75% inhibition of transport vesicle formation activity in an ER membrane budding assay.  相似文献   

5.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

6.
The formation of transport vesicles that bud from endoplasmic reticulum (ER) exit sites is dependent on the COPII coat made up of three components: the small GTPase Sar1, the Sec23/24 complex, and the Sec13/31 complex. Here, we provide evidence that apoptosis-linked gene 2 (ALG-2), a Ca(2+)-binding protein of unknown function, regulates the COPII function at ER exit sites in mammalian cells. ALG-2 bound to the Pro-rich region of Sec31A, a ubiquitously expressed mammalian orthologue of yeast Sec31, in a Ca(2+)-dependent manner and colocalized with Sec31A at ER exit sites. A Ca(2+) binding-deficient ALG-2 mutant, which did not bind Sec31A, lost the ability to localize to ER exit sites. Overexpression of the Pro-rich region of Sec31A or RNA interference-mediated Sec31A depletion also abolished the ALG-2 localization at these sites. In contrast, depletion of ALG-2 substantially reduced the level of Sec31A associated with the membrane at ER exit sites. Finally, treatment with a cell-permeable Ca(2+) chelator caused the mislocalization of ALG-2, which was accompanied by a reduced level of Sec31A at ER exit sites. We conclude that ALG-2 is recruited to ER exit sites via Ca(2+)-dependent interaction with Sec31A and in turn stabilizes the localization of Sec31A at these sites.  相似文献   

7.
Sec13p has been thought to be an essential component of the COPII coat, required for exit of proteins from the yeast endoplasmic reticulum (ER). We show herein that normal function of Sec13p was not required for ER exit of the Hsp150 glycoprotein. Hsp150 was secreted to the medium under restrictive conditions in a sec13-1 mutant. The COPII components Sec23p and Sec31p and the GTP/GDP exchange factor Sec12p were required in functional form for secretion of Hsp150. Hsp150 leaves the ER in the absence of retrograde COPI traffic, and the responsible determinant is a peptide repeated 11 times in the middle of the Hsp150 sequence. Herein, we localized the sorting determinant for Sec13p-independent ER exit to the C-terminal domain. Sec13p-dependent invertase left the ER in the absence of normal Sec13p function, when fused to the C-terminal domain of Hsp150, demonstrating that this domain contained an active mediator of Sec13p-independent secretion. Thus, Hsp150 harbors two different signatures that regulate its ER exit. Our data show that transport vesicles lacking functional Sec13p can carry out ER-to-Golgi transport, but select only specific cargo protein(s) for ER exit.  相似文献   

8.
The SHR3 gene of Saccharomyces cerevisiae encodes an integral membrane component of the endoplasmic reticulum (ER) with four membrane-spanning segments and a hydrophilic, cytoplasmically oriented carboxyl-terminal domain. Mutations in SHR3 specifically impede the transport of all 18 members of the amino acid permease (aap) gene family away from the ER. Shr3p does not itself exit the ER. Aaps fully integrate into the ER membrane and fold properly independently of Shr3p. Shr3p physically associates with the general aap Gap1p but not Sec61p, Gal2p, or Pma1p in a complex that can be purified from N-dodecylmaltoside-solubilized membranes. Pulse-chase experiments indicate that the Shr3p-Gap1p association is transient, a reflection of the exit of Gap1p from the ER. The ER-derived vesicle COPII coatomer components Sec13p, Sec23p, Sec24p, and Sec31p but not Sar1p bind Shr3p via interactions with its carboxyl-terminal domain. The mutant shr3-23p, a nonfunctional membrane-associated protein, is unable to associate with aaps but retains the capacity to bind COPII components. The overexpression of either Shr3p or shr3-23p partially suppresses the temperature-sensitive sec12-1 allele. These results are consistent with a model in which Shr3p acts as a packaging chaperone that initiates ER-derived transport vesicle formation in the proximity of aaps by facilitating the membrane association and assembly of COPII coatomer components.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, Sec13p is required for intracellular protein transport from the ER to the Golgi apparatus, and has also been identified as a component of the COPII vesicle coat structure. Recently, a human cDNA encoding a protein 53% identical to yeast Sec13p has been isolated. In this report, we apply the genetic assays of complementation and synthetic lethality to demonstrate the conservation of function between this human protein, designated SEC13Rp, and yeast Sec13p. We show that two reciprocal human/yeast fusion constructs, encoding the NH2-terminal half of one protein and the COOH-terminal half of the other, can each complement the secretion defect of a sec13-1 mutant at 36 degrees C. The chimera encoding the NH2-terminal half of the yeast protein and the COOH-terminal half of the human protein is also able to complement a SEC13 deletion. Overexpression of either the entire human SEC13Rp protein or the chimera encoding the NH2-terminal half of the human protein and the COOH-terminal half of the yeast protein inhibits the growth of a sec13- 1 mutant at 24 degrees C; this growth inhibition is not seen in a wild- type strain nor in other sec mutants, suggesting that the NH2-terminal half of SEC13Rp may compete with Sec13-1p for a common target. We show by immunoelectronmicroscopy of mammalian cells that SEC13Rp (like the putative mammalian homologues of the COPII subunits Sar1p and Sec23p) resides in the region of the transitional ER. We also show that the distribution of SEC13Rp is not affected by brefeldin A treatment. This report presents the first demonstration of a putative mammalian COPII component functioning in yeast, and highlights a potentially useful approach for the study of conserved mammalian proteins in a genetically tractable system.  相似文献   

10.
Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission.  相似文献   

11.
Coat protein II (COPII)–mediated export from the endoplasmic reticulum (ER) involves sequential recruitment of COPII complex components, including the Sar1 GTPase, the Sec23/Sec24 subcomplex, and the Sec13/Sec31 subcomplex. p125A was originally identified as a Sec23A-interacting protein. Here we demonstrate that p125A also interacts with the C-terminal region of Sec31A. The Sec31A-interacting domain of p125A is between residues 260–600, and is therefore a distinct domain from that required for interaction with Sec23A. Gel filtration and immunodepletion studies suggest that the majority of cytosolic p125A exists as a ternary complex with the Sec13/Sec31A subcomplex, suggesting that Sec 13, Sec31A, and p125A exist in the cytosol primarily as preassembled Sec13/Sec31A/p125A heterohexamers. Golgi morphology and protein export from the ER were affected in p125A-silenced cells. Our results suggest that p125A is part of the Sec13/Sec31A subcomplex and facilitates ER export in mammalian cells.  相似文献   

12.
Newly synthesized proteins that do not fold correctly in the ER are targeted for ER-associated protein degradation (ERAD) through distinct sorting mechanisms; soluble ERAD substrates require ER-Golgi transport and retrieval for degradation, whereas transmembrane ERAD substrates are retained in the ER. Retained transmembrane proteins are often sequestered into specialized ER subdomains, but the relevance of such sequestration to proteasomal degradation has not been explored. We used the yeast Saccharomyces cerevisiae and a model ERAD substrate, the cystic fibrosis transmembrane conductance regulator (CFTR), to explore whether CFTR is sequestered before degradation, to identify the molecular machinery regulating sequestration, and to analyze the relationship between sequestration and degradation. We report that CFTR is sequestered into ER subdomains containing the chaperone Kar2p, and that sequestration and CFTR degradation are disrupted in sec12ts strain (mutant in guanine-nucleotide exchange factor for Sar1p), sec13ts strain (mutant in the Sec13p component of COPII), and sec23ts strain (mutant in the Sec23p component of COPII) grown at restrictive temperature. The function of the Sar1p/COPII machinery in CFTR sequestration and degradation is independent of its role in ER-Golgi traffic. We propose that Sar1p/COPII-mediated sorting of CFTR into ER subdomains is essential for its entry into the proteasomal degradation pathway. These findings reveal a new aspect of the degradative mechanism, and suggest functional crosstalk between the secretory and the degradative pathways.  相似文献   

13.
Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking.  相似文献   

14.
During mitosis the interconnected Golgi complex of animal cells breaks down to produce both finely dispersed elements and discrete vesiculotubular structures. The endoplasmic reticulum (ER) plays a controversial role in generating these partitioning intermediates and here we highlight the importance of mitotic ER export arrest in this process. We show that experimental inhibition of ER export (by microinjecting dominant negative Sar1 mutant proteins) is sufficient to induce and maintain transformation of Golgi cisternae to vesiculotubular remnants during interphase and telophase, respectively. We also show that buds on the ER, ER exit sites and COPII vesicles are markedly depleted in mitotic cells and COPII components Sec23p, Sec24p, Sec13p and Sec31p redistribute into the cytosol, indicating ER export is inhibited at an early stage. Finally, we find a markedly uneven distribution of Golgi residents over residual exit sites of metaphase cells, consistent with tubulovesicular Golgi remnants arising by fragmentation rather than redistribution via the ER. Together, these results suggest selective recycling of Golgi residents, combined with prebudding cessation of ER export, induces transformation of Golgi cisternae to vesiculotubular remnants in mitotic cells. The vesiculotubular Golgi remnants, containing populations of slow or nonrecycling Golgi components, arise by fragmentation of a depleted Golgi ribbon independently from the ER.  相似文献   

15.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

16.
17.
Previous biochemical work has revealed two parallel routes of exit from the endoplasmic reticulum (ER) in the yeast Saccharomyces cerevisiae , one seemingly specific for glycosyl-phosphatidylinositol (GPI)-anchored proteins. Using the coat protein II (COPII) mutant sec31-1 , we visualized ER exit sites (ERES) and identified three distinct ERES populations in vivo. One contains glycosylated pro-α-factor, the second contains the GPI-anchored proteins Cwp2p, Ccw14p and Tos6p and the third is enriched with the hexose transporter, Hxt1p. Concentration of GPI-anchored proteins prior to budding requires anchor remodeling, and Hxt1p incorporation into ERES requires the COPII components Sec12p and Sec16p. Additionally, we have found that GPI-anchored protein ER exit is controlled by the p24 family member Emp24p, whereas ER export of most transmembrane proteins requires the Cornichon homologue Erv14p.  相似文献   

18.
Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.  相似文献   

19.
BACKGROUND: Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying tER organization. RESULTS: We show that the integrity of tER sites in P. pastoris requires the peripheral membrane protein Sec16. P. pastoris Sec16 is an order of magnitude less abundant than a COPII-coat protein at tER sites and seems to show a saturable association with these sites. A temperature-sensitive mutation in Sec16 causes tER fragmentation at elevated temperature. This effect is specific because when COPII assembly is inhibited with a dominant-negative form of the Sar1 GTPase, tER sites remain intact. The tER fragmentation in the sec16 mutant is accompanied by disruption of Golgi stacks. CONCLUSIONS: Our data suggest that Sec16 helps to organize patches of COPII-coat proteins into clusters that represent tER sites. The Golgi disruption that occurs in the sec16 mutant provides evidence that Golgi structure in budding yeasts depends on tER organization.  相似文献   

20.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号