共查询到20条相似文献,搜索用时 15 毫秒
1.
Lawton TW Cronin JB Lindsell RP 《Journal of strength and conditioning research / National Strength & Conditioning Association》2006,20(1):172-176
The purpose of this study was to determine the change in weight training repetition power output as a consequence of interrepetition rest intervals. Twenty-six elite junior male basketball and soccer players performed bench presses using a 6 repetition maximum (6RM) load. The power output for each repetition was recorded using a linear encoder sampling each 10 ms (100 Hz). Subjects were assigned to 1 of 3 intervention groups, differentiated by the arrangement of rest intervals within the 6 repetitions: 6 x 1 repetition with 20-second rest periods between each repetition (Singles); 3 x 2 repetitions with 50 seconds between each pair of repetitions (Doubles); or 2 x 3 repetitions with 100 seconds of rest between each 3 repetitions (Triples). A timer was used to ensure that the rest interval and duration to complete all interrepetition interventions was equated across groups (118 seconds). Significantly (p < 0.05) greater repetition power outputs (25-49%) were observed in the later repetitions (4-6) of the Singles, Doubles, and Triples loading schemes. Significantly greater total power output (21.6-25.1%) was observed for all interrepetition rest interventions when compared to traditional continuous 6RM total power output. No significant between-group differences were found (p = 0.96). We conclude that utilizing interrepetition rest intervals enables greater repetition and total power output in comparison to traditional loading parameters. 相似文献
2.
Optimizing reproduction in a randomly varying environment 总被引:30,自引:0,他引:30
D Cohen 《Journal of theoretical biology》1966,12(1):119-129
3.
Kravitz L Akalan C Nowicki K Kinzey SJ 《Journal of strength and conditioning research / National Strength & Conditioning Association》2003,17(1):167-172
Eighteen elite male power lifters performed 1-repetition maximum (1RM) and submaximal strength tests (70, 80, and 90% 1RM) to develop prediction equations for the squat (SQ), bench press (BP), and deadlift (DL) exercises. For each equation, stepwise multiple-regression prediction procedure included the maximum number of repetitions (REPS) completed at a given %1RM weight (REPWT). For SQ and BP the 70% 1RM yielded the best 1RM prediction equations: (1RM SQ [kg]) = 159.9 + (0.103 x REPS x REPWT) + (-11.552 x REPS), with a standard error of the estimate (SEE) of 5.06 kg; (1RM BP [kg]) = 90.66 + (0.085 x REPS x REPWT) + (-5.306 x REPS), with an SEE of 2.69 kg. For DL the 80% 1RM yielded the best prediction equation: (1RM DL [kg]) = 156.08 + (0.098 x REPS x REPWT) + (-12.106 x REPS), with an SEE of 4.97 kg. The athlete's years lifted (number of years of power lifting experience) was highly correlated with the 1RM strength for BP and DL (r > 0.70) but not for SQ (r < 0.70). No bodily structural dimension variable had a significant correlation with 1RM strength (r < 0.70). The results of this study indicate that 1RM SQ, BP, and DL may be predicted with an acceptable degree of accuracy in elite male high-school power lifter subjects. 相似文献
4.
5.
Scott Medler Kevin Hulme 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,152(3):407-417
Cyclically contracting muscles provide power for a variety of processes including locomotion, pumping blood, respiration, and sound production. In the current study, we apply a computational model derived from force–velocity relationships to explore how sustained power output is systematically affected by shortening velocity, operational frequency, and strain amplitude. Our results demonstrate that patterns of frequency dependent power output are based on a precise balance between a muscle's intrinsic shortening velocity and strain amplitude. We discuss the implications of this constraint for skeletal muscle design, and then explore implications for physiological processes based on cyclical muscle contraction. One such process is animal locomotion, where musculoskeletal systems make use of resonant properties to reduce the amount of metabolic energy used for running, swimming, or flying. We propose that skeletal muscle phenotype is tuned to this operational frequency, since each muscle has a limited range of frequencies at which power can be produced efficiently. This principle also has important implications for our understanding muscle plasticity, because skeletal muscles are capable of altering their active contractile properties in response to a number of different stimuli. We discuss the possibility that muscles are dynamically tuned to match the resonant properties of the entire musculoskeletal system. 相似文献
6.
7.
Hardee JP Triplett NT Utter AC Zwetsloot KA Mcbride JM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(4):883-889
The effect of interrepetition rest (IRR) periods on power output during performance of multiple sets of power cleans is unknown. It is possible that IRR periods may attenuate the decrease in power output commonly observed within multiple sets. This may be of benefit for maximizing improvements in power with training. This investigation involved 10 college-aged men with proficiency in weightlifting. The subjects performed 3 sets of 6 repetitions of power cleans at 80% of their 1 repetition maximum with 0 (P0), 20 (P20), or 40 seconds (P40) of IRR. Each protocol (P0, P20, P40) was performed in a randomized order on different days each separated by at least 72 hours. The subjects performed the power cleans while standing on a force plate with 2 linear position transducers attached to the bar. Peak power, force, and velocity were obtained for each repetition and set. Peak power significantly decreased by 15.7% during P0 in comparison with a decrease of 5.5% (R1: 4,303 ± 567 W, R6: 4,055 ± 582 W) during P20 and a decrease of 3.3% (R1: 4,549 ± 659 W, R6: 4,363 ± 476 W) during P40. Peak force significantly decreased by 7.3% (R1: 2,861 ± 247 N, R6: 2,657 ± 225 N) during P0 in comparison with a decrease of 2.7% (R1: 2,811 ± 327 N, R6: 2,730 ± 285 N) during P20 and an increase of 0.4% (R1: 2,861 ± 323 N, R6: 2,862 ± 280 N) during P40. Peak velocity significantly decreased by 10.2% (R1: 1.97 ± 0.15 m·s(-1), R6: 1.79 ± 0.11 m·s(-1)) during P0 in comparison with a decrease of 3.8% (R1: 1.89 ± 0.13 m·s(-1), R6: 1.82 ± 0.12 m·s(-1)) during P20 and a decrease of 1.7% (R1: 1.93 ± 0.17 m·s(-1), R6: 1.89 ± 0.14 m·s(-1)) during P40. The results demonstrate that IRR periods allow for the maintenance of power in the power clean during a multiple set exercise protocol and that this may have implications for improved training adaptations. 相似文献
8.
Heat output from the right hand was estimated on six healthy young men at varying ambient temperatures, in a temperature-controlled room maintained at 5°, 10°, 15°, 20°, 25°, 30° and 35°C at weekly intervals. The skintemperature of the index finger of both the hands, wrist vein of the right hand and oral temperature, were also recorded during the study. Results indicate that the heat output varies significantly with the changes in ambient temperatures, at higher ranges only. This variation is negligible at lower ambient temperatures. Other parameters supported this observation. 相似文献
9.
J L van Leeuwen 《Journal of theoretical biology》1991,149(2):229-256
A model of a "general" sarcomere is presented for the calculation of power output as a function of (i) contraction range, (ii) contraction velocity, (iii) muscle fibre stimulation (active state) and (iv) structural parameters of the sarcomere (i.e. lengths of actin, myosin, and bare zone on myosin, and thickness of the Z-disc). The model is applicable to virtually all types of striated muscle fibres. By computer simulation, particular combinations of actin and myosin lengths were found that maximize the specific power output for particular functional demands, specified in terms of contraction range and contraction velocity. The accuracy of the prediction of the optimum sarcomere design by the model depends on the quality of its input, i.e. the available knowledge of the in vivo spectrum of contraction velocities and sarcomere excursions. Predictions of sarcomere design from model simulations were compared with ultrastructural data from the literature. With the present model, the complete variation in the ratio of myosin length over actin length (from about 1.05 down to 0.65, as observed in insect and vertebrate sarcomeres) can be explained as a series of adaptations for optimum power output from a small to a large contraction range, respectively. 相似文献
10.
Morning versus evening power output and repeated-sprint ability 总被引:1,自引:0,他引:1
We investigated the effect of time-of-day on both maximal sprint power and repeated-sprint ability (RSA). Nine volunteers (22+/-4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13+/-3 versus 11+/-3 mmol/L(-1), p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958+/-112 vs. 915+/-133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5x6 sec test in the evening (11+/-2 vs. 7+/-3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time-of-day. This suggests that the beneficial effect of time-of-day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints. 相似文献
11.
12.
Coughlin DJ Carroll AM 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2006,145(4):533-539
Recent work has employed video and sonometric analysis combined with hydrodynamic modeling to estimate power output by the feeding musculature of largemouth bass in feeding trials. The result was an estimate of approximately 69 W kg(-1) of power by the epaxial muscle during maximal feeding strikes. The present study employed in vitro measurements of force, work and power output by fast-twitch epaxial muscle bundles stimulated under activation conditions measured in vivo to evaluate the power output results of the feeding experiments. Isolated muscle bundles from the epaxial muscle, the sternohyoideus and the lateral red or slow-twitch muscle were tied into a muscle mechanics apparatus, and contractile properties during tetanic contractions and maximum shortening velocity (Vmax) were determined. For the epaxial muscles, work and power output during feeding events was determined by employing mean stimulation conditions derived from a select set of maximal feeding trials: 17% muscle shortening at 3.6 muscle lengths/s, with activation occurring 5 ms before the onset of shortening. Epaxial and sternohyoideus muscle displayed similar contractile properties, and both were considerably faster (Vmax approximately 11-13 ML s(-1)) than red muscle (Vmax approximately 5 ML s(-1)). Epaxial muscle stimulated under in vivo activation conditions generated approximately 60 W kg(-1) with a 17% strain and approximately 86 W kg(-1) with a 12% strain. These values are close to those estimated by hydrodynamic modeling. The short lag time (5 ms) between muscle activation and muscle shortening is apparently a limiting parameter during feeding strikes, with maximum power found at an offset of 15-20 ms. Further, feeding strikes employing a faster shortening velocity generated significantly higher power output. Power production during feeding strikes appears to be limited by the need for fast onset of movement and the hydrodynamic resistance to buccal expansion. 相似文献
13.
14.
Siegel JA Gilders RM Staron RS Hagerman FC 《Journal of strength and conditioning research / National Strength & Conditioning Association》2002,16(2):173-178
The purpose of this study was to evaluate the use of traditional resistance training equipment in the measurement of muscular power. This was accomplished by measuring the velocity of movement through a measured distance during maximal effort lifts using a Smith rack. The reliability of the method was established using 10 male volunteers who performed both bench press and squat exercises in a Smith rack. Maximal power output was determined at 30, 40, 50, 60, 70, 80, and 90% of the subject's 1 repetition maximum (1RM). Test-retest power values were not statistically different. Another 15 male volunteers who had previous muscle biopsy data from the vastus lateralis muscle performed the same maximal power output evaluation. There were no significant relationships between peak power outputs and fiber-type expressions when linear regressions were performed. The power curve produced by graphing power output vs. the percentage of 1RM indicates that peak power output occurs between 50 and 70% of 1RM for the squat and between 40 and 60% of 1RM for the bench press. These data indicate that this method of evaluation of muscle power is reliable, although it is not predictive of muscle fiber-type percentages. 相似文献
15.
Glaister M Stone MH Stewart AM Hughes M Moir GL 《Journal of strength and conditioning research / National Strength & Conditioning Association》2003,17(4):781-784
The aims of the present study were: (a) to determine the number of familiarization trials required to establish a high degree of reliability in measures of power output during maximal intermittent cycling; and (b) to examine the reliability of those same measures after familiarization had been established. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 8 trials of 1 of 2 maximal (20 x 5-second) intermittent cycling tests with contrasting recovery periods (10-seconds or 30-seconds). Significant (p < 0.05) between-trial differences were detected in post-hoc tests involving trials 1 and 2 only. Within-subject test-retest reliability was therefore assessed across trials 3-8. Apart from values of maximum power output in Protocol 1 (10-second recovery periods), all remaining measures of power output showed high degrees of within-subject test-retest reliability (coefficient of variation: 2.4-3.7%). The results of the present study indicate that in subjects unfamiliar with maximal intermittent cycling, high degrees of reliability in many performance measures can be achieved following the completion of 2 familiarization trials. 相似文献
16.
17.
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC'' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses. 相似文献
18.
19.
M A Ambartsumian 《Tsitologiia》1975,17(9):1094-1097
The rate of multiplication of Paramecium caudatum was studied using individual cultures with media containing 0.001, 0.005, 0.008 and 0.01% borate, resp. At room temperature (20--21 degrees C) with two first concentrations of boron, the ciliates multiply normally over 4 months often surpassing the multiplication rate of the control line. With the increase of boron concentration up to 0.008%, the division rate in paramecia decreases significantly, reaching the control rate only by the end of the 3rd month. At high temperature (26--27 degrees) with 0.001 and 0.005% of boron in the media, P. caudatum was also seen to multiply normally. At lower temperature (15--17 degrees) all the test concentrations of borate used decreased the rate of division, and the higher the concentration of boron the more pronounced was the depressing effect. 相似文献