首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Phytomedicine》2014,21(2):101-108
Sauchinone, a diastereomeric lignan isolated from the roots of Saururus chinensis (LOUR.) BAILL. (Saururaceae), is reported to exert a variety of biological activities such as hepatoprotective, anti-inflammatory actions and inhibitory effects on bone resorption. In this study, we investigated the effect of sauchinone in suppressing cell adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) expression in high glucose stimulated human umbilical vein endothelial cells (HUVEC). Sauchinone inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by the stimulation of high glucose. In addition, sauchinone induced heme oxygenase (HO)-1 expression through nuclear translocation of nuclear factor E2-related factor 2 in HUVEC. The effects of sauchinone on the high glucose-induced expression of VCAM-1 and ICAM-1 and nuclear translocation of NF-κB p65 were partially reversed by transfection of the cells with HO-1 siRNA. These findings suggest that sauchinone-induced HO-1 expression plays a key role in the vascular protective effects of sauchinone in HUVEC.  相似文献   

2.
We examined the underlying mechanisms involved in n-3 docosahexaenoic acid (DHA) inhibition of inflammation in EA.hy926 cells. The present results demonstrated that pretreatment with DHA (50 and 100 μM) inhibited tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule 1 (ICAM-1) protein, mRNA expression and promoter activity. In addition, TNF-α-stimulated inhibitory kappa B (IκB) kinase (IKK) phosphorylation, IκB phosphorylation and degradation, p65 nuclear translocation, and nuclear factor-κB (NF-κB) and DNA binding activity were attenuated by pretreatment with DHA. DHA triggered early-stage and transient reactive oxygen species (ROS) generation and significantly increased the protein expression of heme oxygenase 1 (HO-1), induced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, DHA inhibited Nrf2 ubiquitination and proteasome activity. DHA activated Akt, p38 and ERK1/2 phosphorylation, and specific inhibitors of respective pathways attenuated DHA-induced Nrf2 nuclear translocation and HO-1 expression. Transfection with HO-1 siRNA knocked down HO-1 expression and partially reversed the DHA-mediated inhibition of TNF-α-induced p65 nuclear translocation and ICAM-1 expression. Importantly, we show for the first time that HO-1 plays a down-regulatory role in NF-κB nuclear translocation, and inhibition of Nrf2 ubiquitination and proteasome activity are involved in increased cellular Nrf2 level by DHA. In this study, we show that HO-1 plays a down-regulatory role in NF-κB nuclear translocation and that the protective effect of DHA against inflammation is partially via up-regulation of Nrf2-mediated HO-1 expression and inhibition of IKK/NF-κB signaling pathway.  相似文献   

3.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

4.
5.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.  相似文献   

6.
Oxidative stress is considered a major cause of neurodegenerative disorders. In this work, we investigated the cytoprotective effects and mechanisms of the citrus flavonoid nobiletin (NOB) and its metabolite, 3',4'-didemethylnobiletin (3',4'-dihydroxy-5,6,7,8-tetramethoxyflavone; DTF), in PC12 cells. Both NOB and DTF exhibited strong potency in attenuating serum withdrawal- and H(2)O(2)-caused cell death and increased intracellular GSH level via upregulation of both catalytic and modifier subunits of glutamate-cysteine ligase (GCL). However, only DTF suppressed intracellular ROS accumulation in H(2)O(2)-treated cells, induced heme oxygenase-1 (HO-1) expression, and enhanced nuclear factor E2-related factor 2 (Nrf2) binding to the ARE. Nevertheless, DTF-mediated HO-1 upregulation was independent of Nrf2 activation because knockdown of Nrf2 expression by siRNA did not affect its expression. DTF suppressed NF-κB activation, and addition of NF-κB inhibitor, pyrrolidine dithiocarbamate or Bay 11-7082, synergistically enhanced DTF-mediated HO-1 expression, indicating that HO-1 induction is associated with NF-κB suppression. NOB and DTF also activated the ERK, JNK, and Akt pathways in PC12 cells that had undergone serum starvation. Addition of pharmacological kinase inhibitors, U0126, SP600125, and LY294002, caused cytotoxicity and the last significantly attenuated NOB- and DTF-mediated antiapoptotic actions, indicating the involvement of PI3K/Akt signaling in their cytoprotective effects. In conclusion, HO-1 and GCL upregulation and intrinsic ROS-scavenging activity may contribute to DTF-mediated cytoprotection. Furthermore, modulation of PI3K/Akt signaling is involved in channeling the DTF stimulus for cell survival against oxidative insults.  相似文献   

7.
Glutathione peroxidase-1 (GPx-1) is a crucial antioxidant enzyme, the deficiency of which promotes atherogenesis. Accordingly, we examined the mechanisms by which GPx-1 deficiency enhances endothelial cell activation and inflammation. In human microvascular endothelial cells, we found that GPx-1 deficiency augments intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression by redox-dependent mechanisms that involve NFκB. Suppression of GPx-1 enhanced TNF-α-induced ROS production and ICAM-1 expression, whereas overexpression of GPx-1 attenuated these TNF-α-mediated responses. GPx-1 deficiency prolonged TNF-α-induced IκBα degradation and activation of ERK1/2 and JNK. JNK or NFκB inhibition attenuated TNF-α induction of ICAM-1 and VCAM-1 expression in GPx-1-deficient and control cells, whereas ERK1/2 inhibition attenuated only VCAM-1 expression. To analyze further signaling pathways involved in GPx-1-mediated protection from TNF-α-induced ROS, we performed microarray analysis of human microvascular endothelial cells treated with TNF-α in the presence and absence of GPx-1. Among the genes whose expression changed significantly, dual specificity phosphatase 4 (DUSP4), encoding an antagonist of MAPK signaling, was down-regulated by GPx-1 suppression. Targeted DUSP4 knockdown enhanced TNF-α-mediated ERK1/2 pathway activation and resulted in increased adhesion molecule expression, indicating that GPx-1 deficiency may augment TNF-α-mediated events, in part, by regulating DUSP4.  相似文献   

8.
9.
10.
Vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) are upregulated in vascular endothelial and smooth muscle cells by cytokines produced at sites of inflammation. The cytokine profile for induction of VCAM-1, however, is different for the two cell types. Tumor necrosis factor-α (TNF-α) induced both VCAM-1 and ICAM-1 expression in human umbilical vein endothelial cells (HUVECs; ED50 ∼ 300 and 30 U/ml, respectively). TNF-α and interleukin-1β (IL-1β) stimulated cell surface ICAM-1 expression, but not VCAM-1 expression, in human aortic smooth muscle cells (HASMCs). Conversely, IL-4 was a potent VCAM-1 inducer in HASMCs (ED50 ∼ 100 pg/ml) but did not induce ICAM-1 expression. Nuclear extracts from IL-4-treated cells were compared with untreated cells for relative nuclear factor-kappa B (NF-κB) levels by using an electrophoretic mobility shift assay and surface plasmon resonance techniques. No significant increase in nuclear NF-κB DNA binding activity was detected in IL-4-treated HASMCs by either method of analysis. IL-1β and TNF-α stimulated nuclear NF-κB levels by about fourfold and fivefold, respectively, in HASMCs. The antioxidant pyrrolidine dithiocarbamate (PDTC) similarly inhibited VCAM-1 upregulation in HASMCs incubated with IL-4 and in HUVECs incubated with TNF-α (IC50s of 25 and 40 μM, respectively). These data suggest that a significant increase in nuclear NF-κB levels is not necessary or sufficient for VCAM-1 upregulation in HASMCs and does not determine the relative sensitivity to inhibition of gene expression by PDTC. J. Cell. Physiol. 180:381–389, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
12.
Quercetin, one of the most abundant dietary flavonoids, is reported to have protective function against various hepatotoxicant-induced hepatotoxicity. The present study aims to investigate the critical role of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway in the protection of quercetin against hepatotoxicity. Quercetin prevented the cytotoxicity induced by a variety of hepatotoxicants including clivorine (Cliv), acetaminophen (APAP), ethanol, carbon tetrachloride (CCl4), and toosendanin (TSN) in human normal liver L-02 cells. Quercetin induced the nuclear translocation of Nrf2, along with the increased expression of the antioxidant responsive element (ARE)-dependent genes like catalytic or modify subunit of glutamate-cysteine ligase (GCLC/GCLM), and heme oxygenase-1 (HO-1). In addition, the HO-1 inhibitor zinc protoporphyrin (ZnPP) and the GCL inhibitor L-buthionine-(S,R)-sulfoximine (BSO) both reduced the hepatoprotection induced by quercetin. Quercetin had no effect on kelch-like ECH-associated protein-1(Keap1) expression, but molecular docking results indicated the potential interaction of quercetin with the Nrf2-binding site in Keap1 protein. Quercetin increased the expression of p62, and p62 siRNA decreased quercetin-induced hepatoprotection. Quercetin induced the activation of c-Jun N-terminal kinase (JNK) in hepatocytes. JNK inhibitor SP600125 and JNK siRNA both reduced quercetin-induced hepatoprotection. SP600125 and JNK siRNA decreased the increased p62 expression induced by quercetin. In addition, SP600125 also decreased the increased mRNA and protein expression of GCLC, GCLM, and HO-1 induced by quercetin. Taken together, our present study demonstrates that quercetin prevents hepatotoxicity by inducing p62 expression, inhibiting the binding of Keap1 to Nrf2, and thus leading to the increased expression of antioxidative genes dependent on Nrf2. Meanwhile, our study indicates that JNK plays some regulation in this process.  相似文献   

13.
This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE-/-) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.  相似文献   

14.
15.
Genipin, an aglycon of geniposide, has been reported to have anti-inflammatory effect. However, the anti-inflammatory activity of genipin on LPS-stimulated BV2 microglial cells has not been reported. In this study, we investigated the molecular mechanisms responsible for the anti-inflammatory activity of genipin both in vivo and in vitro. The levels of TNF-α, IL-1β, NO and PGE2 were detected by ELISA. The expression of Nrf2, HO-1, and NF-κB were detected by western blot analysis. In vivo, genipin significantly attenuated LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Genipin also inhibited LPS-induced TNF-α and IL-1β expression in brain tissues. In vitro, our results showed that genipin inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production in a concentration-dependent manner. Genipin also suppressed LPS-induced NF-κB activation. In addition, the expression of Nrf2 and HO-1 were up-regulated by treatment of genipin. Furthermore, the inhibition of genipin on inflammatory mediator production was attenuated by transfection with Nrf2 siRNA. In conclusion, genipin inhibited LPS-induced inflammatory response by activating Nrf2 signaling pathway in BV2 microglia.  相似文献   

16.
17.
18.
The bioactive peptide salusin-β is highly expressed in human atheromas; additionally, infusion of antiserum against salusin-β suppresses the development of atherosclerosis in atherogenic mice. This study examined the roles of salusin-β in vascular inflammation during atherogenesis. Infusion of antiserum against salusin-β attenuated the induction of VCAM-1, monocyte chemoattractant protein (MCP)-1, and IL-1β and as well as nuclear translocation of NF-κB in aortic endothelial cells (ECs) of LDL receptor-deficient mice, which led to the prevention of monocyte adhesion to aortic ECs. In vitro experiments indicated that salusin-β directly enhances the expression levels of proinflammatory molecules, including VCAM-1, MCP-1, IL-1β, and NADPH oxidase 2, as well as THP-1 monocyte adhesion to cultured human umbilical vein ECs (HUVECs). Both salusin-β-induced VCAM-1 induction and monocyte/HUVEC adhesion were suppressed by pharmacological inhibitors of NF-κB, e.g., Bay 11-7682 and curcumin. Furthermore, the VCAM-1 induction was significantly prevented by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, whereas it was accelerated by the ERK inhibitor, U-0126. Treatment of HUVECs with salusin-β, but not with salusin-α, accelerated oxidative stress and nuclear translocation of NF-κB as well as phosphorylation and degradation of IκB-α, an endogenous inhibitor of NF-κB. Thus, salusin-β enhanced monocyte adhesion to vascular ECs through NF-κB-mediated inflammatory responses in ECs, which can be modified by PI3K or ERK signals. These findings are suggestive of a novel role of salusin-β in atherogenesis.  相似文献   

19.
Protein glutathionylation is a protective mechanism that functions in response to mild oxidative stress. Carbon monoxide (CO) can increase the reactive oxygen species concentration from a low level via the inhibition of cytochrome c oxidase. We therefore hypothesized that CO would induce NF-κB-p65 glutathionylation and then show anti-inflammatory effects. In this study, we found that CO-releasing molecules suppress TNFα-induced monocyte adhesion to endothelial cells (ECs) and reduce ICAM-1 expression. Moreover, CO donors were further found to exert their inhibitory effects by blocking NF-κB-p65 nuclear translocation, but do so independent of IκBα degradation, in TNFα-treated ECs. In addition, p65 protein glutathionylation represents the response signal to CO donors and is reversed by the reducing agent dithiothreitol. Thiol modification of the cysteine residue in the p65 RHD region was required for the CO-modulated NF-κB activation. The suppression of p65 glutathionylation by a GSH synthesis inhibitor, BSO, and by catalase could also attenuate TNFα-induced p65 nuclear translocation and ICAM-1 expression. CO donors induce Nrf2 activation and Nrf2 siRNA suppresses CO-induced p65 glutathionylation and inhibition. Furthermore, we found that the CO donors induce heme oxygenase-1 (HO-1) expression, which increases p65 glutathionylation. In contrast, HO-1 siRNA attenuates CO donor- and hemin-induced p65 glutathionylation. Our results thus indicate that the glutathionylation of p65 is likely to be responsible for CO-mediated NF-κB inactivation and that the HO-1-dependent pathway may prolong the inhibitory effects of CO donors upon TNFα treatment of ECs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号