首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2.  相似文献   

2.
3.
The protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor. Rgd1p, which encodes a Rho GTPase-activating protein for the small G proteins Rho3p and Rho4p, also plays a role in low-pH response. The rgd1Delta strain is sensitive to low pH, and Rgd1p activates the PKC pathway in an acidic environment. Inactivation of both genes in the double mutant rgd1Delta mid2Delta strain renders yeast cells unable to survive at low pH as in bck1Delta and slt2Delta strains. Our data provide evidence for the existence of two distinct ways, one involving Mid2p and the other involving Rgd1p, with both converging to the cell integrity pathway to mediate low-pH tolerance in Saccharomyces cerevisiae. Nevertheless, even if Rgd1p acts on the PKC pathway, it seems that its mediating action on low-pH tolerance is not limited to this pathway. As the Mid2p amount plays a role in rgd1Delta sensitivity to low pH, Mid2p seems to act more like a molecular rheostat, controlling the level of PKC pathway activity and thus allowing phenotypical expression of RGD1 inactivation.  相似文献   

4.
5.
Weber Y  Prill SK  Ernst JF 《Eukaryotic cell》2004,3(5):1164-1168
Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.  相似文献   

6.
7.
Noma S  Iida K  Iida H 《Eukaryotic cell》2005,4(8):1353-1363
Mid1 is a putative stretch-activated Ca2+ channel component and is required for the maintenance of viability in the mating process. In response to mating pheromone, the mid1 mutant normally forms a pointed mating projection but eventually dies. This phenotype is called the mid phenotype. To identify a protein regulating Mid1 or regulated by Mid1, we isolated a multicopy suppressor that rescues the mid1-1 mutant from mating pheromone-induced death and found that it encodes a truncated Spa2 protein lacking an amino-terminal region responsible for interaction with components of the mitogen-activated protein kinase cascades. One of these SPA2 alleles was SPA2DeltaN, whose product lacked the region from Ser5 to Leu230. SPA2DeltaN on a multicopy plasmid (YEpSPA2DeltaN) complemented the mid phenotype but not another phenotype, low Ca2+ accumulation, of the mid1-1 mutant. Neither SPA2DeltaN on a low-copy plasmid nor wild-type SPA2 on a multicopy plasmid had suppressive activity. The SPA2 gene is involved in the formation of a pointed mating projection, and cells of the spa2Delta mutant lacking Spa2 are viable and develop a peanut shell-like structure when exposed to mating pheromone. Like the spa2Delta mutant, the mid1-1 spa2Delta double mutant and the mid1-1/YEpSPA2DeltaN strain developed the peanut shell-like structure. The mid1-1 spa2Delta double mutant did not have the mid phenotype, indicating that SPA2 is epistatic to MID1. Overexpression of Spa2DeltaN abolished the localization of Spa2-green fluorescent protein to the tip of the mating projection. These results suggest that the Spa2DeltaN protein interferes with the localization of the normal Spa2 protein and thereby prevents cells from entering the mating process. Therefore, we suggest that Mid1 function is influenced by Spa2 function through polarized morphogenesis.  相似文献   

8.
9.
10.
Protein-O-glycosylation in yeast: protein-specific mannosyltransferases   总被引:11,自引:2,他引:9  
S.cerevisiae contains at least six genes (PMT1–6) fordolicholphosphate-D-mannose: protein-O-D-mannosyltransferases.The in vivo mannosylation of seven O-mannosylated yeast proteinshas been analyzed in a number of pmt mutants. The results clearlyindicate that the various protein O-mannosyltransferases havedifferent specificities for protein substrates. Five of theproteins tested (chitinase, a-agglutinin, Kre9p, Bar1p, Pir2p/hsp150)are mainly underglycosylated in pmt1 and pmt2 mutants, wherebyqualitative differences exist among the various proteins. Twoof the O-mannosylated proteins (Ggp1p and Kex2p) are not atall affected in pmt1 and pmt2 mutants but are clearly underglycosylatedwhen PMT4 is mutated. Although the PMT4 gene product is shownto be responsible for O-mannosylating a Ser-rich region of Ggp1pin vivo, a penta-seryl-peptide is not an in vitro substratefor this transferase. A PMT3 mutation does affect O-manno-sylationof chitinase only in the genetic background of a pmt1pmt2 doublemutation, indicating that PMT1 and PMT2 can compensate for adeleted PMT3 gene. dolichol-phosphate PMT gene family protein glycosylation S. cerevisiae  相似文献   

11.
Protein O mannosylation is initiated in the endoplasmic reticulum by protein O-mannosyltransferases (Pmt proteins) and plays an important role in the secretion, localization, and function of many proteins, as well as in cell wall integrity and morphogenesis in fungi. Three Pmt proteins, each belonging to one of the three respective Pmt subfamilies, are encoded in the genome of the human fungal pathogen Cryptococcus neoformans. Disruption of the C. neoformans PMT4 gene resulted in abnormal growth morphology and defective cell separation. Transmission electron microscopy revealed defective cell wall septum degradation during mother-daughter cell separation in the pmt4 mutant compared to wild-type cells. The pmt4 mutant also demonstrated sensitivity to elevated temperature, sodium dodecyl sulfate, and amphotericin B, suggesting cell wall defects. Further analysis of cell wall protein composition revealed a cell wall proteome defect in the pmt4 mutant, as well as a global decrease in protein mannosylation. Heterologous expression of C. neoformans PMT4 in a Saccharomyces cerevisiae pmt1pmt4 mutant strain functionally complemented the deficient Pmt activity. Furthermore, Pmt4 activity in C. neoformans was required for full virulence in two murine models of disseminated cryptococcal infection. Taken together, these results indicate a central role for Pmt4-mediated protein O mannosylation in growth, cell wall integrity, and virulence of C. neoformans.  相似文献   

12.
The response to cell surface stress in yeast is mediated by a set of five plasma membrane sensors. We here address the relation of intracellular localization of the sensors Wsc1, Wsc2, and Mid2 to their turnover and signaling function. Growth competition experiments indicate that Wsc2 plays an important role in addition to Wsc1 and Mid2. The two Wsc sensors appear at the bud neck during cytokinesis and employ different routes of endocytosis, which govern their turnover. Whereas Wsc1 uses a clathrin-dependent NPFDD signal, Wsc2 relies on a specific lysine residue (K495). In end3 and doa4 endocytosis mutants, both sensors accumulate at the plasma membrane, and a hypersensitivity to cell wall-specific drugs and to treatment with zymolyase is observed. A haploid strain in which endocytosis of the two sensors is specifically blocked displays a reduced fitness in growth competition experiments. If the Mid2 sensor is mobilized by the addition of an endocytosis signal, it mimics the dynamic distribution of the Wsc sensors, but is unable to complement the specific growth defects of a wsc1 deletion. These data suggest that sensor distribution is not the major determinant for its specificity.  相似文献   

13.
14.
15.
Zhou H  Hu H  Zhang L  Li R  Ouyang H  Ming J  Jin C 《Eukaryotic cell》2007,6(12):2260-2268
Protein O-mannosyltransferases initiate O mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. In this study, the PMT gene family of the human fungal pathogen Aspergillus fumigatus was identified and characterized. Unlike the case in Saccharomyces cerevisiae, where the PMT family is highly redundant, only one member of each PMT subfamily, namely, Afpmt1, Afpmt2, and Afpmt4, is present in A. fumigatus. Mutants with a deletion of Afpmt1 are viable. In vitro and in vivo activity assays confirmed that the protein encoded by Afpmt1 acts as an O-mannosyltransferase (AfPmt1p). Characterization of the ΔAfpmt1 mutant showed that a lack of AfPmt1p results in sensitivity to elevated temperature and defects in growth and cell wall integrity, thereby affecting cell morphology, conidium formation, and germination. In a mouse model, Afpmt1 was not required for the virulence of A. fumigatus under the experimental conditions used.  相似文献   

16.
During the mating process of yeast cells, two Ca2+ influx pathways become activated. The resulting elevation of cytosolic free Ca2+ activates downstream signaling factors that promote long term survival of unmated cells, but the roles of Ca2+ in conjugation have not been described. The high affinity Ca2+ influx system is composed of Cch1p and Mid1p and sensitive to feedback inhibition by calcineurin, a Ca2+/calmodulin-dependent protein phosphatase. To identify components and regulators of the low affinity Ca2+ influx system (LACS), we screened a collection of pheromone-responsive genes that when deleted lead to defects in LACS activity but not high affinity Ca2+ influx system activity. Numerous factors implicated in polarized morphogenesis and cell fusion (Fus1p, Fus2p, Rvs161p, Bni1p, Spa2p, and Pea2p) were found to be necessary for LACS activity. Each of these factors was also required for activation of the cell integrity mitogen-activated protein kinase cascade during the response to alpha-factor. Interestingly a polytopic plasma membrane protein, Fig1p, was required for LACS activity but not required for activation of Mpk1p mitogen-activated protein kinase. Mpk1p was not required for LACS activity, suggesting Mpk1p and Fig1p define two independent branches in the pheromone response pathways. Fig1p-deficient mutants exhibit defects in the cell-cell fusion step of mating, but unlike other fus1 and fus2 mutants the fusion defect of fig1 mutants can be largely suppressed by high Ca2+ conditions, which bypass the requirement for LACS. These findings suggest Fig1p is an important component or regulator of LACS and provide the first evidence for a role of Ca2+ signals in the cell fusion step of mating.  相似文献   

17.
18.
Khalfan W  Ivanovska I  Rose MD 《Genetics》2000,155(4):1543-1559
The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.  相似文献   

19.
20.
In Saccharomyces cerevisiae, protein O-mannosylation, which is executed by protein O-mannosyltransferases, is essential for a variety of biological processes as well as for conferring solubility to misfolded proteins. To determine if O-mannosylation plays an essential role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, we used a model misfolded protein, Gas1*p. The O-mannose content of Gas1*p, which is transferred by protein O-mannosyltransferases, was higher than that of Gas1p. Both Pmt1p and Pmt2p, which do not transfer O-mannose to correctly folded Gas1p, participated in the O-mannosylation of Gas1*p. Furthermore, in a pmt1 Delta pmt2 Delta double-mutant background, degradation of Gas1*p is altered from a primarily proteasome dependent to a vacuolar protease-dependent pathway. This process is in a manner dependent on a Golgi-to-endosome sorting function of the VPS30 complex II. Collectively, our data suggest that O-mannosylation plays an important role for proteasome-dependent degradation of Gas1*p via the ERAD pathway and when O-mannosylation is insufficient, Gas1*p is degraded in the vacuole. Thus, we propose that O-mannosylation by Pmt1p and Pmt2p might be a key step in the targeting of some misfolded proteins for degradation via the proteasome-dependent ERAD pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号