首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-(Allylthio)pyrazine (2-AP), a synthetic pyrazine derivative with an allylsulfur moiety, has hepatoprotective effects against toxicants. Effect of 2-AP on hepatic tumorigenesis in association with glutathione S-transferase (GST) induction was examined in rats exposed to aflatoxin B1 (AFB1). Both AFB1-DNA adduct formation in the liver and urinary elimination of 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 (AFB1-N7-guanine) adduct were also determined. Male Sprague Dawley rats were treated with 2-AP at the daily oral doses of 10, 25 and 50 mg/kg for 16 consecutive days, during which four repeated doses of AFB1 (1.0 mg/kg) were given to the animals. Rats were then subjected to two-thirds of hepatectomy, followed by administration of phenobarbital (PB). Focal areas of hepatocellular alteration were identified after 44 days and preneoplastic foci expressing the placental form of glutathione S-transferase P (GST-P) were quantified by immunostaining of liver sections. 2-AP reduced the volume of liver occupied by GST-P foci by 65-96%. Under these experimental conditions, 2-AP treatment resulted in significant elevations in GST activity in the liver. Levels of radiolabeled AFB1 covalently bound to hepatic DNA, RNA and proteins were significantly reduced in rats treated with 2-AP for 5 days. 2-AP pretreatment also caused a 45% reduction in the urinary elimination of AFB1-N7-guanine adduct over the 24-h postdosing period. The present findings demonstrated that 2-AP exhibited protective effects against AFB1-induced hepatocarcinogenesis in rats with a marked decrease in the level of AFB1-DNA adduct. Reduction of hepatic DNA adducts might result from elevations of activity of GST, which catalyzes detoxification of the carcinogen.  相似文献   

2.
The mutagenic and carcinogenic chemical aflatoxin B1 (AFB1) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB1 oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB1 oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB1 oxide prefers to react with guanines in some sequence contexts more than in others and has been referred to as "sequence specificity of binding". Herein, data on the reaction of AFB1 oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determined by high-pressure liquid chromatography. These results reveal that for AFB1 oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. The reactivities of 190 guanines were determined quantitatively and considered in a pentanucleotide context, 5'-WXGYZ-3', where the central, underlined G represents the reactive guanine and W, X, Y, and Z can be any of the nucleotide bases. Methods are developed to determine that the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. The influence of the bases in the 5'-position (X) is 5'-G (1.0) greater than C (0.8) greater than A (0.3) greater than T (0.2), while the influence of the bases in the 3'-position (Y) is 3'-G (1.0) greater than T (0.8) greater than C (0.4) greater than A (0.3). These rules in conjunction with molecular modeling studies (to be published elsewhere) were used to assess the binding sites that might be utilized by AFB1 oxide in its reaction with DNA.  相似文献   

3.
The cytotoxic and mutagenic effect of aflatoxin B1-dichloride (AFB1-Cl2), a direct-acting carcinogen which is a model for the proposed ultimate reactive metabolite of AFB1 (the 2,3-epoxide), was compared in normal, repair-proficient, diploid human fibroblasts and in complementation Group A xeroderma pigmentosum cells (XP12BE) which are virtually incapable of excision repair of DNA damage induced by ultraviolet radiation, the 7,8-diol-9,10-epoxide of benzo[alpha]pyrene, and several reactive aromatic amide derivatives. The XP cells were significantly more sensitive than normal to the cytotoxic and mutagenic effects of AFB1-Cl2, not only as a function of concentration administered but also of the number of AFB1-Cl2 residues initially bound to DNA. Cytotoxicity was determined from survival of colony-forming ability; resistance to 6-thioguanine was the genetic marker used for mutagenicity. We compared the rate of loss of AFB1-Cl2-DNA adducts from cells treated and held in the non-dividing state (confluent) over several days, as well as their ability to recover from the potentially mutagenic and/or cytotoxic effects of the agent. AFB1-Cl2 residues were lost from both strains of cells and both exhibited a gradual increase in survival. However, the rate of loss of adducts from the DNA in the normal cells was more rapid than in XP cells and they exhibited recovery from higher doses of AFB1-Cl2 than XP cells. The major primary DNA adduct formed in the human cells and in isolated DNA was a chemically unstable guanine derivative which could undergo a change in structure with time posttreatment to form a more stable secondary adduct. The cytotoxic effect of AFB1-Cl2 was highly correlated with the presence of either of these guanine adducts. Evidence suggests that the primary adduct is an N7-guanine adduct. The kinetics of the loss of this guanine and its transformation into the more stable secondary adduct resembled that reported recently for the major primary DNA adduct formed by the reaction of AFB1 at the N-7 position of guanine in the DNA of normal and XP cells and its transformation into the putative AFB1-ring opened triamino pyrimidyl structure.  相似文献   

4.
The genotoxic activity of four mycotoxins has been studied. High level of somatic mutagenesis in imaginal discs of Drosophila melanogaster larvae and DNA repair synthesis in human embryo and adult rat liver cell cultures were inducible only by highly carcinogenic aflatoxin B1. Patulin, a weak direct-action carcinogenic substance, slightly elevated the mutagenesis in somatic cells of Drosophila but did not induce DNA repair synthesis in liver cell cultures. Citrinin that did not exhibit any carcinogenic properties when used alone and stachybotrotoxin with non-reported carcinogenic activity appeared inactive in the test-systems applied. The possibilities of rapid recognition of carcinogenic mycotoxins by detecting their genotoxic properties are discussed.  相似文献   

5.
A problem that has hindered the study of the biological properties of certain DNA adducts, such as those that form at the N7 atoms of purines, is their extreme chemical lability. Conditions are described for the construction of a single-stranded genome containing the chemically and thermally labile 8,9-dihydro-8- (N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct, the major DNA adduct of the potent liver carcinogen aflatoxin B1 (AFB1). A 13mer oligonucleotide, d(CCTCTTCGAACTC), was allowed to react with the exo-8,9-epoxide of AFB1 to form an oligonucleotide containing a single AFB1-N7-Gua (at the underlined guanine). This modified 13mer was 5'-phosphorylated and ligated into a gap in an M13 bacteriophage genome generated by annealing a 53mer uracil-containing scaffold to M13mp7L2 linearized by EcoRI. Following ligation, the scaffold was enzymatically removed with uracil DNA glycosylase and exonuclease III. The entire genome construction was complete within 3 h and was carried out at 16 degrees C, pH 6.6, conditions determined to be optimal for AFB1-N7-Gua stability. Characterization procedures indicated that the AFB1-N7-Gua genome was approximately 95% pure with a small (5%) contamination by unmodified genome. This construction scheme should be applicable to other chemically or thermally unstable DNA adducts.  相似文献   

6.
A comparison between [14C]aflatoxin B1 (AFB1) and [14C]aflatoxin G1 (AFG1) binding to rat liver and kidney cellular macromolecules has shown AFG1-DNA and-ribosomal RNA binding to be lower in both organs. For both mycotoxins more was bound to nucleic acids than to protein. Two hours after intraperitoneal injection (60 microgram/100 g) of [14C] AFB1, 40 ng, 151 ng/mg. Loss of radioactivity bound to liver DNA for both [14C]AFB1 and protein respectively and for [14C]AFG1 the respective figures were 10, 7 and 1 ng/mg. Loss of liver bound radioactivity to DNA for both [14C]AFG1 and [14C]AFG1 appeared to be biphasic indicating that an enzymic DNA repair process may be operating. In vitro binding studies also showed less AFG1 was bound to exogenous DNA after microsomal activation than AFB1. This difference was not a result of differences in the chemical reactivity of the "ultimate" electrophilic species, the respective expoxides, since chemical activation studies using 3-chloroperbenzoic acid showed similar amounts of AFG1 and AFB1 to be converted to the epoxides and to bind to DNA. Studies on the distribution coefficients of the two mycotoxins showed AFB1 to be more lipophilic than AFG1 and this may be an important factor in determining the weaker carcinogenicity of the latter compound. Characterisation of the major AFG1-DNA adduct formed in vitro, in vivo and after peracid oxidation showed it to have the structure trans-9,10-dihydro-9-(7-guanyl)-10-hydroxy-aflatoxin G1. This adduct is similar to that obtained from AFB1 by activation in vivo, in vitro and after peracid oxidation.  相似文献   

7.
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.  相似文献   

8.
Giri I  Stone MP 《Biopolymers》2002,65(3):190-201
The trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B(1) cationic guanine N7 adduct of aflatoxin B(1) thermally stabilizes the DNA duplex, as reflected in increased T(m) values upon adduction. The magnitude of the increased T(m) value is characteristically 2-3 degrees C. The major rotamer of the neutral guanine N7 adduct trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B(1) (the FAPY major adduct) exhibits a 15 degrees C increase in T(m) in 5'-d(CTAT(FAPY)GATTCA)-3'-5'-d(TGAATCATAG)-3'. Site-specific mutagenesis experiments reveal the FAPY major adduct induces G-->T mutations in Escherichia coli at a frequency six times higher than that of the cationic adduct (Smela, M. E.; Hamm, M. L.; Henderson, P. T.; Harris, C. M.; Harris, T. M.; Essigmann, J. M. Proc Natl Acad Sci USA, 99, 6655-6660). Thus, the FAPY major lesion may account substantially for the genotoxicity of AFB(1). Structural studies for cationic and FAPY adducts of aflatoxin B(1) suggest both adducts intercalate above the 5'-face of the modified deoxyguanosine and that in each instance the aflatoxin moiety spans the DNA helix. Intercalation of the aflatoxin moiety, accompanied by favorable stacking with the neighboring base pairs, is thought to account for the increased thermal stability of the aflatoxin cationic guanine N7 and the FAPY major adducts. However, the structural basis for the large increase in thermal stability of the FAPY major adduct in comparison to the cationic guanine N7 adduct of aflatoxin B(1) is not well understood. In light of the site-specific mutagenesis studies, it is of considerable interest. For both adducts, the intercalation structures are similar, although improved stacking with neighboring base pairs is observed for the FAPY major adduct. In addition, the presence of the formamido group in the aflatoxin B(1) FAPY major adduct may enhance duplex stability, perhaps via intrastrand sequence-specific hydrogen bonding interactions within the duplex.  相似文献   

9.
Two theoretical models are proposed for the conformational structure of both intercalated and covalent adduct complexes of aflatoxin B1, designated AFB1, with N7 of guanine of DNA. The covalent adduct model requires the DNA to kink a minimum of 39 degrees about the covalent site of the C8 and N7 atoms comprising the bond of the covalent complex. The preference of AFB1 for specific G bases within a sequence of GC content followed that of experimental studies with the added feature that for binding to the third G base of a tetramer sequence from the 3'-end, the AFB1 displayed enhanced binding at the 3' site of the targeted guanosine. Binding of AFB1 to the second G base of a tetramer sequence from the 3'-end leads to preference for a 5' site of the targeted guanosine. Inhibition of AFB1's interaction with the targeted DNA in the presence of intercalated ethidium bromide is explained by these proposed models.  相似文献   

10.
Aflatoxin B1 (AFB1) is a fungal toxin that has been associated with primary hepatocellular carcinoma (HCC) in humans. This study was undertaken to determine the cellular and molecular mechanisms by which the antioxidants beta-carotene and lycopene inhibit AFB1-induced toxic changes in human hepatocytes (HepG2 cells). An in vitro system was optimized to test the chemoprotective effects of lycopene and beta-carotene on HepG2 cells exposed to different concentrations of AFB1. Ultrastructurally, HepG2 cells cultured in the presence of AFB1 showed mitochondrial damage, nuclear condensation and a loss of cell-to-cell contact; the latter was reflected in the observation of dysfunctional gap junctions, resulting in a loss of cell-to-cell communication. At the genomic level, AFB1 formed AFB1-N7-guanine adducts, caused apoptotic cell death and suppressed p53 protein expression. In the presence of the carotenoids, survival of cells exposed to AFB1 was increased, and there was also a significant increase in cellular mitochondrial activity. Our results demonstrate that HepG2 cells pretreated with lycopene and beta-carotene are protected from the toxic effects of AFB1 at both the cellular and molecular levels.  相似文献   

11.
We have investigated the processing of adducts formed by covalent binding of aflatoxin B1 (AFB1) to DNA in confluent cultures of African green monkey cells. Repair synthesis elicited by AFB1 adducts was deficient in alpha DNA sequences compared to that in bulk DNA, although the initial levels of modification were the same for these DNAs. The removal of the primary initial adduct, AFB1-N7-Guanine, was deficient in alpha DNA and the kinetics of its loss resembled those previously reported for removal from total DNA in xeroderma pigmentosum cells of complementation group A. Spontaneous loss of the AFB1 moiety or the concomitant loss of the guanine to yield an apurinic site account for these results. The formation of the more chemically stable secondary product, AFB1-triamino-Pyrimidine, occurred more rapidly and to a greater extent in alpha DNA than in bulk DNA, probably because of slower removal of the primary product. The excision repair patch size for AFB1 adducts in alpha DNA was only 10 nucleotides compared to 20 nucleotides for repair of AFB1 adducts in bulk DNA. Irradiation of cells with low doses of UV prior to or immediately after treatment with AFB1 increased the rate and extent of removal of AFB1 adducts from alpha DNA to the levels found in the bulk DNA, indicating that the formation of pyrimidine dimers or their repair may alter the chromatin structure of alpha DNA sufficiently to facilitate its repair.  相似文献   

12.
Aflatoxin B1 (AFB1) is a potent carcinogen and mutagen. It requires metabolic activation to be converted to the DNA-binding product aflatoxin B1 epoxide (AFB1-epoxide). A model of this epoxide is aflatoxin B1 dichloride (AFB1Cl2). Both react at the N7 position of guanine to form large adducts. The major adduct formed can either be rapidly removed to leave an apurinic site or can undergo ring opening of the imidazole ring to form a chemically stable adduct. A number of Chinese hamster DNA repair-deficient mutants have been screened for their sensitivity to AFB1-epoxide and AFB1Cl2. Some of the mutants screened belong to different UV complementation groups. Human genes involved in nucleotide excision-repair correct deficiencies found in these complementation groups. The mutants which were found to be most sensitive to AFB1 (V-C4 and V-H1) were further investigated. Alkaline elution was used to measure AFB1-induced DNA single-strand break repair in the mutants. V-H1 repaired completely in 24 h whereas V-C4 displayed only partial repair.  相似文献   

13.
By an introduction of sodium dodecylsulfate for cell lysis and immunomicroplate for mass assay, the modified SOS microplate assay method was established and applied for the evaluation of genotoxicity of mycotoxins and fungal cultures. Among 20 mycotoxins, the carcinogenic dihydrobisfuranoids such as aflatoxin B1, sterigmatocystin, and versicolorin A were positive in the presence of the activation system. While, the carcinogenic anthraquinones and lactones such as luteoskyrin, rugulosin, ochratoxin A, patulin, and citrinin were negative. The survey on genotoxic fungi revealed that, among 15 fungal isolates Aspergillus versicolor, Emericella acristata, and others were positive. Additional survey on 265 fungal isolates have revealed that various Aspergillus genera such as A. flavus, A. parasiticus, A. ustus, A. nidulans, and others were positive for SOS induction, along with several isolates of Fusarium moniliforme. The chemical analysis revealed that the dihydrobisfuranoids such as aflatoxin B1, and sterigmatocystin were the major genotoxic metabolites of several Aspergillus species. The SOS microplate assay system is a simple and rapid procedure for the mass screening of genotoxic fungi, particularly of the dihydrobisfuranoids-producing strains.  相似文献   

14.
J J Pestka  Y K Li    F S Chu 《Applied microbiology》1982,44(5):1159-1165
Aflatoxin B2a (AFB2a) antiserum has been previously used in an enzyme-linked immunosorbent assay (ELISA) for the quantitation of AFB1 and AFB2a. The present investigation examined the reactivity of the antiserum toward those adducts and metabolites of AFB1 believed to play a major role in aflatoxicosis and carcinogenesis. 2,3-Dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (AFB1-N7-Gua), the putative 2,3-(N5-formyl-2-2', 5',6'-triamino-4-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (AFB1-FAPyr), 2,3-dihydro-2,3-dihydroxyaflatoxin B1 (AFB1-diol), AFB1-N7-Gua-modified DNA, and AFB1-FAPyr-modified DNA were prepared by in vitro incubation or chemical methods and subjected to competitive AFB2a ELISA. The antiserum showed significant reactivity with all five compounds, indicating that it had a high degree of specificity for both the cyclopentenone and the methoxy group of the parent aflatoxin molecule. Sensitivity for AFB-N7-Gua-modified DNA, AFB1-FAPyr-modified DNA, and AFB1-diol by the ELISA method was 0.1 pmol per assay. To test the applicability of immunological detection of covalent binding of AFB1 to DNA, the ELISA was compared with a conventional radioisotopic assay in two in vitro studies. The results showed that estimates of the kinetics and substrate dependence of covalent binding to calf thymus DNA in rat microsomal incubation mixtures by both methods were comparable. The broad specificity AFB2a antibody might be of considerable value in the detection of AFB1 macromolecular adducts and related metabolites in epidemiological investigations or in the diagnosis of aflatoxicosis.  相似文献   

15.
Aflatoxin B1 (AFB1) is a mutagenic and carcinogenic mycotoxin which may play a role in the etiology of human liver cancer. In vitro studies have shown that AFB1 adducts form primarily at the N7 position of guanine. Using quantitative PCR (QPCR) and ligation-mediated PCR (LMPCR), we have mapped total AFB1 adducts in genomic DNA treated with AFB1-8,9-epoxide and in hepatocytes exposed to AFB1 activated by rat liver microsomes or human liver and enterocyte microsomal preparations. The p53 gene-specific adduct frequencies in DNA, modified in cells with 40-400 microM AFB1, were 0.07-0.74 adducts per kilobase (kb). In vitro modification with 0. 1-4 ng AFB1-8,9-epoxide per microgram DNA produced 0.03-0.58 lesions per kb. The adduct patterns obtained with the epoxide and the different microsomal systems were virtually identical indicating that adducts form with a similar sequence-specificity in vitro and in vivo. The lesions were detected exclusively at guanines with a preference towards GpG and methylated CpG sequences. The methods utilizing QPCR and LMPCR thus provide means to assess gene-specific and sequence-specific AFB1 damage. The results also prove that microsomally-mediated damage is a suitable method for avoiding manipulations with very unstable DNA-reactive metabolites and that this damage can be detected by QPCR and LMPCR.  相似文献   

16.
Mouse monoclonal antibodies were developed against a synthetic aflatoxin B(1) (AFB)-lysine-cationized bovine serum albumin conjugate. The isotype of one of these antibodies, IIA4B3, has been classified as immunoglobulin G1(lambda). The affinity and specificity of IIA4B3 were further characterized by a competitive radioimmunoassay. The affinities of IIA4B3 for AFB and its associated adducts and metabolites are ranked as follows: AFB-lysine > 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl formamido)-9-hydroxy-AFB > AFB = 8,9-dihydro-8-(N(7)-guanyl)-9-hydroxy-AFB > aflatoxin M(1) > aflatoxin Q(1). IIA4B3 had about a 10-fold higher affinity for binding to AFB-lysine adduct than to AFB when (3)H-AFB-lysine was used as the tracer. The concentration for 50% inhibition for AFB-lysine was 0.610 pmol; that for AFB was 6.85 pmol. IIA4B3 had affinities at least sevenfold and twofold higher than those of 2B11, a previously developed antibody against parent AFB, for the major aflatoxin-DNA adducts 8,9-dihydro-8-(N(7)-guanyl)-9-hydroxy-AFB and 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl formamido)-9-hydroxy-AFB, respectively. An analytical method based on a competitive radioimmunoassay with IIA4B3 and (3)H-AFB-lysine was validated with a limit of detection of 10 fmol of AFB-lysine adduct. The method has been applied to the measurement of AFB-albumin adduct levels in human serum samples collected from the residents of areas at high risk for liver cancer.  相似文献   

17.
Aflatoxins (AFs) produce singlet oxygen upon their exposure to UV (365-nm) light. Singlet oxygen in turn activates them to mutagens and DNA-binding species. DNA binding and mutagenesis by AFs were enhanced in D2O as compared to reactions in H2O, and a singlet oxygen scavenger inhibited mutagenesis. DNA photobinding of 3H-AFB1 increased in the presence of unlabeled AFB2, and the addition of AFB2 enhanced mutagenesis by AFB1 in a synergistic manner. These results are compatible with the notion that singlet oxygen, formed by one aflatoxin molecule, can readily activate another aflatoxin molecule. This may bear an environmental implication in that the weakly carcinogenic AFB2, which is often produced in nature together with AFB1, may be important in enhancing the activation of AFB1 by sunlight.  相似文献   

18.
Metabolism of aflatoxin B1 (AFB1) by subcellular preparations of Aspergillus flavus is least understood. The results reported here have demonstrated for the first time the epoxidation of AFB1 and subsequent conjugation with glutathione (GSH). Microsomes prepared from toxigenic mycelia catalysed [3H]AFB1 to calf thymus DNA to a greater extent (approximately 2-fold) as compared to that of non-toxigenic. The binding of [3H]AFB1 to exogenous and A. flavus nuclear DNA catalyzed by A. flavus microsomes was found to be comparable with that of mammalian extrahepatic tissue such as lung. Addition of phenobarbitone to the growing cultures resulted in 1.5-fold increase in [3H]AFB1-DNA binding mediated by microsomes prepared from either of the two strains. Tolnaftate, an inhibitor of aflatoxin synthesis enhanced the epoxidation rate in a dose-related manner. The binding of [3H]AFB1 to DNA catalyzed by A. flavus microsomes was significantly reduced (50% of control) upon addition of hamster liver cytosol, thereby substantiating the formation of the carcinogen adduct with DNA as reported in mammalian tissues. The metabolite formed by subcellular preparation of A. flavus was found to be AFB1-GSH having Rf value (6.5) similar to that obtained for mammalian liver preparations.  相似文献   

19.
Humans chronically infected with hepatitis B virus (HBV) are at further risk of liver cancer upon exposure to dietary aflatoxin B1 (AFB1), a carcinogenic product of the mold Aspergillus flavus. For the present study, we utilized double-transgenic mice (ATX mice) that express the HBV X protein (HBx) and possess a bacteriophage lambda transgene to evaluate the in vivo effect of HBx expression on AFB1-induced DNA mutations. The expression of HBx correlated with a 24% increase in mutation frequency overall and an approximately twofold increase in the incidence of G/C-to-T/A transversion mutations following AFB1 exposure. These results are consistent with a model in which expression of HBx during chronic HBV infection may contribute to the development of hepatocellular carcinoma following exposure to environmental carcinogens.  相似文献   

20.
Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)—through its IARC Monographs programme—has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B1, B2, G1, G2 and M1), fumonisins (fumonisin B1 and B2) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis–should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans–could lead to the reclassification of OTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号