首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

2.
The Rad3 ATPase/DNA helicase was purified to physical homogeneity from extracts of yeast cells containing overexpressed Rad3 protein. The DNA helicase can unwind duplex regions as short as 11 base pairs in a partially duplex circular DNA substrate and does so by a strictly processive mechanism. On partially duplex linear substrates, the enzyme has a strict 5'----3' polarity with respect to the single strand to which it binds. Nicked circular DNA is not utilized as a substrate, and the enzyme requires single-stranded gaps between 5 and 21 nucleotides long to unwind oligonucleotide fragments from partially duplex linear molecules. The enzyme also requires duplex regions at least 11 base pairs long when these are present at the ends of linear molecules. Rad3 DNA helicase activity is inhibited by the presence of ultraviolet-induced photoproducts in duplex regions of partially duplex circular molecules.  相似文献   

3.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

4.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

5.
Vaccinia virus infection induces expression of a protein which can catalyze joint molecule formation between a single-stranded circular DNA and a homologous linear duplex. The kinetics of appearance of the enzyme parallels that of vaccinia virus DNA polymerase and suggests it is an early viral gene product. Extracts were prepared from vaccinia virus-infected HeLa cells, and the strand exchange assay was used to follow purification of this activity through five chromatographic steps. The most highly purified fraction contained three major polypeptides of 110 +/- 10, 52 +/- 5, and 32 +/- 3 kDa. The purified protein requires Mg2+ for activity, and this requirement cannot be satisfied by Mn2+ or Ca2+. One end of the linear duplex substrate must share homology with the single-stranded circle, although this homology requirement is not very high, as 10% base substitutions had no effect on the overall efficiency of pairing. As with many other eukaryotic strand exchange proteins, there was no requirement for ATP, and ATP analogs were not inhibitors. Electron microscopy was used to show that the joint molecules formed in these reactions were composed of a partially duplex circle of DNA bearing a displaced single-strand and a duplex linear tail. The recovery of these structures shows that the enzyme catalyzes true strand exchange. There is also a unique polarity to the strand exchange reaction. The enzyme pairs the 3' end of the duplex minus strand with the plus-stranded homolog, thus extending hybrid DNA in a 3'-to-5' direction with respect to the minus strand. Which viral gene (if any) encodes the enzyme is not yet known, but analysis of temperature-sensitive mutants shows that activity does not require the D5R gene product. Curiously, v-SEP appears to copurify with vaccinia virus DNA polymerase, although the activities can be partially resolved on phosphocellulose columns.  相似文献   

6.
RecA protein makes stable joint molecules from fully duplex DNA and molecules that are partially single-stranded; the latter may be either duplex molecules with an internal gap in one strand or molecules with single-stranded ends. Stable joint molecules form only when the end of at least one strand is in a homologous region. When RecA protein pairs linear duplex molecules and tailed molecules that share the same sequence end to end, the joints, which are located away from the single-stranded tails in most instances, have the electron microscopic appearance associated with the Holliday structure resulting from the reciprocal exchange of strands. The reaction leading to reciprocal strand exchange involves the concerted displacement of a strand from the end of the duplex molecule. These observations support the view that RecA protein makes stable joint molecules only by transferring strands and not by the side-by-side pairing of duplex regions.  相似文献   

7.
The genome of herpes simplex virus type-1 undergoes a high frequency of homologous recombination in the absence of a virus-encoded RecA-type protein. We hypothesized that viral homologous recombination is mediated by the combined action of the viral single strand DNA-binding protein (ICP8) and helicase-primase. Our results show that ICP8 catalyzes the formation of recombination intermediates (joint molecules) between circular single-stranded acceptor and linear duplex donor DNA. Joint molecules formed by invasion of a 3'-terminal strand displaces the non-complementary 5'-terminal strand, thereby creating a loading site for the helicase-primase. Helicase-primase acts on these joint molecules to promote ATP-dependent branch migration. Finally, we have reconstituted strand exchange by the synchronous action of ICP8 and helicase-primase. Based on these data, we present a recombination mechanism for a eukaryotic DNA virus in which a single strand DNA-binding protein and helicase cooperate to promote homologous pairing and branch migration.  相似文献   

8.
The direction of the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase II was studied using gapped linear DNA molecules with short duplex ends as substrate. The results suggest that DNA helicase II unwinds with 3'-5' polarity relative to the single strand of the DNA partial duplex. At high enzyme DNA ratio the enzyme also unwinds the duplex connected to the 3' end of the single strand and, as further studies show, fully duplex linear DNA. The fraction of DNA unwound decreases as the length of the duplex substrate increases. The preference of DNA helicase II for a short duplex can obscure the fact that the typical substrate is duplex connected to the 5' end of a single strand.  相似文献   

9.
Purified human Rad51 protein (hRad51) catalyses ATP-dependent homologous pairing and strand transfer reactions, characteristic of a central role in homologous recombination and double-strand break repair. Using single-stranded circular and partially homologous linear duplex DNA, we found that the length of heteroduplex DNA formed by hRad51 was limited to approximately 1.3 kb, significantly less than that observed with Escherichia coli RecA and Saccharomyces cerevisiae Rad51 protein. Joint molecule formation required the presence of a 3' or 5'-overhang on the duplex DNA substrate and initiated preferentially at the 5'-end of the complementaryx strand. These results are consistent with a preference for strand transfer in the 3'-5' direction relative to the single-stranded DNA. The human single-strand DNA-binding protein, hRP-A, stimulated hRad51-mediated joint molecule formation by removing secondary structures from single-stranded DNA, a role similar to that played by E. coli single-strand DNA-binding protein in RecA-mediated strand exchange reactions. Indeed, E. coli single-strand DNA-binding protein could substitute for hRP-A in hRad51-mediated reactions. Joint molecule formation by hRad51 was stimulated or inhibited by hRad52, dependent upon the reaction conditions. The inhibitory effect could be overcome by the presence of hRP-A or excess heterologous DNA.  相似文献   

10.
In the presence of 100 mM NaCl, the efficient exchange of strands between a circular single strand and an homologous DNA duplex promoted by the recA and single-stranded DNA binding proteins of Escherichia coli requires an unpaired 3' terminus. Of the duplex DNAs tested, only those with 4 unpaired bases at the 3' termini are effective. Without added NaCl, strand exchange proceeds efficiently with all duplex DNA termini examined including a nicked circular duplex. Thus, at approximately physiological salt concentrations, factors in addition to the recA and single-stranded DNA binding proteins are needed to promote efficient strand exchange. One such factor may be a DNA helicase(s).  相似文献   

11.
Underwinding of DNA associated with duplex-duplex pairing by RecA protein   总被引:3,自引:0,他引:3  
Homologous pairing between gapped circular and partially homologous form I DNA, catalyzed by Escherichia coli RecA protein, leads to the formation of nascent synaptic joints between regions of duplex DNA. These duplex-duplex interactions result in underwinding of the form I DNA, as detected by a topoisomerase assay. Underwound DNA species have been studied with regard to their formation, stability, and topological requirements. The synaptic joints are short-lived and of low frequency compared with those formed between single-stranded and duplex DNA. Measurement of the degree of underwinding indicates joints 300-400 base pairs in length, in which the two DNA molecules are presumed to be interwound within the RecA-nucleoprotein filament. Underwound DNA was not detected in reactions between gapped DNA and partially homologous nicked circular or relaxed covalently closed DNA. We have also investigated the requirements for the initiation of strand exchange. Previous results have shown that strand exchange requires a homologous 3'-terminus complementary to the gapped region. We now show that the minimum length of overlap required for efficient initiation of strand exchange is one to two turns of DNA within the RecA-DNA nucleoprotein filament.  相似文献   

12.
E Cassuto 《The EMBO journal》1984,3(9):2159-2164
The concerted action of DNA gyrase and RecA protein of Escherichia coli on intact and gapped homologous or partially homologous plasmid DNA molecules leads to the formation of covalently closed DNA containing one strand of each parental molecule. Large regions of non-homology can be incorporated into the closed circular duplex. Both proteins are essential for the reaction to take place, and type I topoisomerase cannot substitute for DNA gyrase.  相似文献   

13.
RecA protein from Escherichia coli promotes homologous pairing and strand exchange between duplex DNA molecules if one is partially single-stranded. Using linear duplexes and circles with a single-stranded gap as the substrates, this reaction generates nicked circular heteroduplex DNA and linear molecules with single-stranded ends. The completion of strand exchange can be demonstrated by the production of nicked circular heteroduplex DNA detected by gel electrophoresis and autoradiography using radiolabeled linear molecules. When the effect of ultraviolet damage to the substrate DNA was tested, strand exchange was found to pass 30 or more pyrimidine dimers in each duplex. In contrast, exchanges were blocked or severely slowed by interstrand cross-links and monoadducts produced by psoralen and 360 nm light. Deletions and insertions of from 4 to 38 base pairs in the DNA substrates had little effect on the production of nicked circular heteroduplex DNA. However, those of 120 base pairs, or greater, reduced the product yield to a level below the threshold of detection. These results contrast with those obtained in related three-stranded reactions (Bianchi, M. E., and Radding, C. M. (1984) Cell 35, 511-520), in which stable heteroduplex products with 500 or 1300 unpaired bases were obtained when the insert was located within a single-stranded circular substrate.  相似文献   

14.
Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.  相似文献   

15.
B J Rao  B Jwang  M Dutreix 《Biochimie》1991,73(4):363-370
During the directional strand exchange that is promoted by RecA protein between linear duplex DNA and circular single-stranded DNA, a triple-stranded DNA intermediate was formed and persisted even after the completion of strand transfer followed by deproteinization. In the deproteinized three-stranded DNA complexes, the sequestered linear third strand resisted digestion by E coli exonuclease I. In relation to polarity of strand exchange which defines the proximal and distal ends of the duplex DNA, when homology was restricted to the distal region of duplex substrate, the joints formed efficiently and were stable even upon complete deproteinization. Enzymatic probing of deproteinized distal joints with nuclease P1 revealed that the joints consist of long three-stranded structures that at neutral pH lack significant single-stranded character in any of the three strands. Instead of circular single-stranded DNA, when a linear single strand is recombined with partially homologous duplex DNA, in the presence of SSB, the formation of homologous joints by RecA protein, is significantly more efficient at distal end than at the proximal. Taken together, these observations suggest that with any single-stranded DNA (circular or linear), RecA protein efficiently promotes the formation of distal joints, from which, however, authentic strand exchange may not occur. Moreover, these joints might represent an intermediate which is trapped into a stable triple stranded state.  相似文献   

16.
The recA protein, which is essential for genetic recombination in E. coli, promotes the homologous pairing of double-stranded DNA and linear single-stranded DNA, thereby forming a three-stranded joint molecule called a D loop. Single-stranded DNA stimulates recA protein to unwind double-stranded DNA. By a presumably related mechanism, recA protein promoted the homologous pairing of two circular double-stranded molecules when one of them had a gap in one strand. The two molecules were joined at homologous sites by noncovalent bonds. The covalently closed molecule remained intact and was not topologically linked to the intact circular strand of the gapped substrate. Electron microscopy showed that molecules were usually linked at two or more nearby points. The junctions in most molecules were shorter than 300 nucleotides. Sometimes the region between two extreme points was separated into two arms, producing an ellipsoidal loop (called an eye loop). The junctions in these biparental joint molecules were frequently remote from the site of the gap. We infer that a free end of the interrupted strand crossed over to form a structure like a D loop which moved away from the gap by branch migration.  相似文献   

17.
Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between the creation of new heteroduplex DNA and the eventual separation of a third strand, there exists an unusual DNA intermediate that may contain three-stranded regions of natural DNA that are several thousand bases in length.  相似文献   

18.
Binding of the Escherichia coli Tus protein to its cognate nonpalindromic binding site on duplex DNA (a Ter sequence) is sufficient to arrest the progression of replication forks in a Ter orientation-dependent manner in vivo and in vitro. In order to probe the molecular mechanism of this inhibition, we have used a strand displacement assay to investigate the effect of Tus on the DNA helicase activities of DnaB, PriA, UvrD (helicase II), and the phi X-type primosome. When the substrate was a short oligomer hybridized to a circular single-stranded DNA, strand displacement by DnaB, PriA, and the primosome (in both directions), but not UvrD, was blocked by Tus in a polar fashion. However, no inhibition of either DnaB or UvrD was observed when the substrate carried an elongated duplex region. With this elongated substrate, PriA helicase activity was only inhibited partially (by 50%). On the other hand, both the 5'----3' and 3'----5' helicase activities of the primosome were inhibited almost completely by Tus with the elongated substrate. These results suggest that while Tus can inhibit the translocation of some proteins along single-stranded DNA in a polar fashion, this generalized effect is insufficient for the inhibition of bona fide DNA helicase activity.  相似文献   

19.
RecA protein promotes two distinct types of synaptic structures between circular single strands and duplex DNA; paranemic joints, where true intertwining of paired strands is prohibited and the classically intertwined plectonemic form of heteroduplex DNA. Paranemic joints are less stable than plectonemic joints and are believed to be the precursors for the formation of plectonemic joints. We present evidence that under strand exchange conditions the binding of HU protein, from Escherichia coli, to duplex DNA differentially affects homologous pairing in vitro. This conclusion is based on the observation that the formation of paranemic joint molecules was not affected, whereas the formation of plectonemic joint molecules was inhibited from the start of the reaction. Furthermore, introduction of HU protein into an ongoing reaction stalls further increase in the rate of the reaction. By contrast, binding of HU protein to circular single strands has neither stimulatory nor inhibitory effect. Since the formation of paranemic joint molecules is believed to generate positive supercoiling in the duplex DNA, we have examined the ability of positive superhelical DNA to serve as a template in the formation of paranemic joint molecules. The inert positively supercoiled DNA could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. Taken collectively, these results indicate that the structural features of the bacterial chromosome which include DNA supercoiling and organization of DNA into nucleosome-like structures by HU protein modulate homologous pairing promoted by the nucleoprotein filaments of recA protein single-stranded DNA.  相似文献   

20.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号