首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental instability in morphological characters can occur during individual development due to various environmental stresses. Fluctuating asymmetry (FA) is often used as a measurement of developmental instability, but within-environment variation (CVe) is also considered an indicator of developmental instability. Cabbage aphid ( Brevicoryne brassicae ) populations were reared on zinc- (Zn) or cadmium- (Cd) contaminated cabbage and radish plants. Developmental instability indicators were measured and their relations with fitness were explored. Results revealed that cabbage aphids exposed to Cd and Zn displayed considerable developmental instability, particularly fluctuating asymmetry. Differences in developmental instability between the two metals were also detected, as well as differences between the two developmental instability measurements. For almost all measured traits, FA was greater on Cd- and Zn-contaminated compared to non-contaminated host plants. In contrast, CVe of some traits was greater on non-contaminated host plants, yet for other traits CVe was greater on contaminated host plants. There were also non-significant inverse relationships between FA and fitness of cabbage aphid populations. Due to weak correlations between FA and different patterns of two developmental instability measurements, this study does not support the hypothesis that developmental instability is a useful bioindicator of environmental quality.  相似文献   

2.
Developmental stability, canalization, and phenotypic plasticity are the most common sources of phenotypic variation, yet comparative studies investigating the relationships between these sources, specifically in plants, are lacking. To investigate the relationships among developmental stability or instability, developmental variability, canalization, and plasticity in plants, we conducted a field experiment with Abutilon theophrasti, by subjecting plants to three densities under infertile vs. fertile soil conditions. We measured the leaf width (leaf size) and calculated fluctuating asymmetry (FA), coefficient of variation within and among individuals (CVintra and CVinter), and plasticity (PIrel) in leaf size at days 30, 50, and 70 of plant growth, to analyze the correlations among these variables in response to density and soil conditions, at each of or across all growth stages. Results showed increased density led to lower leaf FA, CVintra, and PIrel and higher CVinter in fertile soil. A positive correlation between FA and PIrel occurred in infertile soil, while correlations between CVinter and PIrel and between CVinter and CVintra were negative at high density and/or in fertile soil, with nonsignificant correlations among them in other cases. Results suggested the complexity of responses of developmental instability, variability, and canalization in leaf size, as well as their relationships, which depend on the strength of stresses. Intense aboveground competition that accelerates the decrease in leaf size (leading to lower plasticity) will be more likely to reduce developmental instability, variability, and canalization in leaf size. Increased developmental instability and intra‐ and interindividual variability should be advantageous and facilitate adaptive plasticity in less stressful conditions; thus, they are more likely to positively correlate with plasticity, whereas developmental stability and canalization with lower developmental variability should be beneficial for stabilizing plant performance in more stressful conditions, where they tend to have more negative correlations with plasticity.  相似文献   

3.
To examine the effects of hybridization and environmental stress on developmental instability, we examined fluctuating asymmetry (FA), the variance in random deviations from perfect symmetry in bilaterally symmetrical traits, for leaf symmetry in a Salix hybrid system. An abiotic environmental stress (water stress), an interspecific biotic stress (pathogen attack), and an intraspecific biotic stress (competition) were examined to determine which factors increase developmental instability. None of these three environmental stressors significantly increased FA. However, genetic stress through hybridization was detected; hybrid plants showed significantly higher levels of FA than parental species. In contrast to hybridization providing greater developmental stability through heterozygosity, these results suggest that complex, nonadditive interactions provided developmental stability and that developmental instability increased when coadapted gene complexes were disrupted through hybridization. In addition, plant biomass was significantly, negatively correlated with FA, suggesting that those individuals that were more able to buffer themselves against the disruptive effects of environmental stress may have a selective advantage over those that are less able to buffer themselves against these disruptive effects.  相似文献   

4.
This study investigates the influence of biotic and abiotic factors associated with the morphological development of Brevicoryne brassicae (Linnaeus) and the associated hyperparasitoid Alloxysta fuscicornis (Hartig). The experiment involved the examination of whether aphid size was influenced by their vertical distribution and density on the host plant, as well as whether variations in hyperparasitoid size and symmetry were correlated with those of their aphid hosts. An aphid multivariate size index was obtained using principal component analysis, while symmetry was evaluated in terms of fluctuating asymmetry (FA). Samples were collected in 2007 on cabbage plants cultivated at an experimental farm located in Uberlandia, Minas Gerais, Brazil (18°56??54???S; 48°12??46???W). The results demonstrated that the size of B. brassicae was negatively associated with temperature, but not with its vertical distribution on the host plant. Temperature was also negatively correlated with hyperparasitoid size. During warmer periods, females produced large quantities of small-sized offspring, whereas an opposite pattern, i.e. the production of fewer offspring of larger size took place during colder periods. This type of adjustment involving trade-offs between physiological and morphological mechanisms, as well as individual interaction with abiotic environmental factors, such as temperature, can be considered an adaptive plastic response in order to increase the chances of survival at a given locality. The encountered relationship between aphid and hyperparasitoid sizes may be an after effect of their indirectly biotic interaction. Hyperparasitoid FA was dependent on the width of the mummified aphids. However, the hypothesis that temperature and vertical distribution on the host plant might influence FA was not confirmed.  相似文献   

5.
Humans find symmetrical faces more attractive than are asymmetricalfaces. Evolutionary psychologists claim that our preferencefor symmetry can be explained in the context of mate choicebecause symmetry is an honest indicator of the genetic qualityof potential mates. These arguments assume that asymmetry inhuman faces is fluctuating asymmetry (FA), because this formof asymmetry can be revealing of developmental instability.However, no study has yet examined the characteristics of facialasymmetry. Here we provide the first detailed study of the patternsof asymmetry in human faces. We measured asymmetry in 35 facialtraits. Although some traits had distributions characteristicof FA, many had distributions that characterize directionalasymmetry (DA); on average, both men and women had right hemi-facedominance. For DA traits we used deviations from the mean asymmetryas a measure of developmental instability. Our measures of asymmetryaccounted for a moderate proportion of the variance in perceivedsymmetry. Importantly, only FAs and random deviations from DAcontributed to people's perception of symmetry. DA was not importantin symmetry judgments. Faces rated as symmetrical were alsorated as attractive. Random deviations from DA were weakly relatedto women's attractiveness judgments of men's faces. DAs didnot influence attractiveness judgments. Our data suggest thatpeople focus on aspects of facial asymmetry that may be revealingof developmental instability. Further studies that isolate FAfrom other forms of asymmetry are required to accurately assessthe influence of developmental instability on the quality ofindividuals and its potential role in mate preferences.  相似文献   

6.
Fluctuating asymmetry (FA) represents small, random variations in traits, presumably with bilateral symmetry, and is widely used as a tool to measure developmental instability in plants and animals. Because FA is a quick, simple and reliable measure, it has been frequently used for monitoring levels of environmental stress. This study investigated whether FA can be used as a predictor of individual developmental instability for four sympatric Melastomataceae species. To achieve that aim, 20 individuals of Trembleya laniflora, T. parviflora, Lavoisiera campos‐portoana and Tibouchina heteromalla were marked in southeastern Brazil and monitored before and during the flowering season. The FA index was calculated as the mean of the difference in the width or length between the left and right sides measured for each leaf or flower. All studied species exhibited asymmetry in the leaves and flowers, but the leaves of L. campos‐portoana and the petal width of T. heteromalla exhibited directional asymmetry, also an indicator of developmental instability. The highest level of leaf asymmetry was found in T. heteromalla and on flowers of L. campos‐portoana. None of the studied species exhibited a significant relationship between the FA level of the leaves and flowers on an individual basis, indicating that environmental and/or genetic sources of stress might act differently on different plant traits. For the studied species, measurements of FA can be suggested as useful tools to biomonitor levels of stress experienced by both leaves and flowers within the Melastomataceae family.  相似文献   

7.
Small random deviations from left–right symmetry in bilateral traits, termed fluctuating asymmetry (FA), are theoretically predicted to increase with environmental stress and believed to constitute a potential biomarker in conservation. However, reported relationships between FA and stress are generally weak and variable among organisms, traits and stresses. Here we test if, and to what extent, FA increases with nutritional stress, estimated from independent feather growth measurements, in free-ranging house sparrows (Passer domesticus). Ptilochronological feather marks showed significant heterogeneity among study plots, indicating that house sparrow populations were exposed to variable levels of nutritional stress during development. However, individuals from more stressed populations did not show increased levels of fluctuating asymmetry in tarsus or rectrix length, nor was there evidence for significant between-trait concordance in FA at the individual or the population level. Lack of support for FA in tarsus and rectrix length as estimator of nutritional stress in house sparrows may indicate that developmental instability is insensitive to nutritional stress in this species, poorly reflected in patterns of fluctuating asymmetry due to ecological or statistical reasons, or highly context-specific. Such uncertainty continues to hamper the use of FA as a biomarker tool in conservation planning.  相似文献   

8.
本文采用随机整体抽样的方法分析了先天性心脏病患者129例(男性59例, 女性70例) 和正常对照人群133例(男性69例, 女性64例) 13项皮纹波动不对称性(Fluctuating asymmetry, FA)的分布特征。结果表明: (1)先天性心脏病患者组与正常对照组在13项皮纹波动不对称性指标中均未出现显著性别差异; (2)先天性心脏病患者组与正常对照组在FAⅥ(P<0.05)和FAⅦ(P<0.01)两项有显著性差异, 表现为患者组明显增高, 提示先天性心脏病患者在胚胎发育早期易受到环境因素影响, 具有较高的发育不稳定性。  相似文献   

9.
Developmental instability, measured as fluctuating asymmetry (FA) in bilateral traits, has been used widely as an indicator of genetic or environmental stress in a variety of plant and animal taxa. FA arises as small deviations from perfect bilateral symmetry which reflect 'mistakes' in developmental processes resulting from the inability of the genotype to buffer itself effectively against environmental perturbations. Recently, it has been proposed that FA in the otoliths can be used as an indicator of condition in larval fish. This paper reviews the conceptual and methodological aspects of FA relevant to its potential use as a measure of well-being. Its simplicity makes FA an attractive tool to measure developmental precision and condition. However, there are several pitfalls, such as measuring error or potentially size dependence. Subtle asymmetries, i.e. between sides variation of a trait at the individual level, may not always be indicative of condition and should be interpreted with caution. The past-growth record of otoliths may provide a powerful means of studying the development of asymmetries at the level of the individual.  相似文献   

10.
Developmental instability results from small, random perturbations to developmental processes of individual traits. Phenotypic outcomes of developmental instability include fluctuating asymmetry (FA, subtle deviations from perfect bilateral symmetry) and phenodeviance (minor morphological abnormalities). A great deal of research over the past 18 years has focused on the role of developmental instability in sexual selection. A driving force behind this research has been the developmental instability-sexual selection hypothesis, which posits that symmetry and lack of phenodeviance in secondary sexual traits are assessed by mates and rivals because they provide a reliable cue of individual genetic quality. The present article tests this hypothesis by evaluating its five main predictions using published results: expressions of developmental instability in secondary sexual traits should be (1) negatively correlated with mating success; (2) directly assessed by mates and sexual rivals; (3) heritable; (4) condition-dependent; and (5) negatively correlated with ornament size. The first two predictions receive considerable, though not ubiquitous, support from a range of animal species. However, FA in secondary sexual traits is generally not significantly heritable, indicating that FA is unlikely to reveal genetic quality that can be transmitted to offspring. Similarly, there is little evidence to support the predictions that FA is condition dependent, and that it is negatively phenotypically or genetically correlated with sexual trait size. Based on an evaluation of the evidence overall, it is concluded that this hypothesis is unlikely to be viable; it appears unlikely that mate choice for symmetry evolves by “good genes” sexual selection. Hypotheses that do not require asymmetry and phenodeviance to reveal heritable genetic quality may explain observed links between FA/phenodeviance and mating success. Results of a case study of Drosophila bipectinata are summarized, which reinforce this general conclusion. It is suggested that nonadditive genetic variation arising from an interaction between trait-specific developmental genes and genetic background may drive sexual selection for reducing developmental instability in some cases. Levels of developmental instability variation in a population may need to surpass a critical threshold for sexual selection to operate, possibly explaining some of the pronounced heterogeneity in the effect of developmental instability on sexual selection reported in the literature.  相似文献   

11.
C Vishalakshi  B N Singh 《Génome》2006,49(7):777-785
Fluctuating asymmetry (FA, subtle random deviations from perfect bilateral symmetry) is often used as a measure of developmental instability (DI), which results from perturbations in developmental pathways caused by genetic or environmental stressors. During the present study, we estimated FA in 5 morphological traits, viz. wing length (WL), wing to thorax ratio (W:T), sternopleural bristle number (SBN), sex-comb tooth number (SCTN), and ovariole number (ON) in 18 laboratory populations of Drosophila ananassae. FA levels of measured traits differed significantly among populations except for SBN (in males and females) and W:T ratio (in females). Positional fluctuating asymmetry (PFA), a sensitive measure of DI, also varied significantly among the populations for SBN in females and SCTN in males. Interestingly, both males and females were similar for nonsexual traits. However, when FA across all traits (sexual and nonsexual) was combined into a single composite index (CFA), significant differences were found for both populations and sexes. Males showed higher CFA values than females, suggesting that males are more prone to developmental perturbations. The magnitude of FA differed significantly among traits, being lowest for nonsexual traits (SBN, WL, W:T ratio) and highest for sexual traits (SCTN and ON). The trait size of sexual traits (SCTN and ON) was positively correlated with their asymmetry. The possible reasons for variation in FA both among traits and among populations, and the usefulness of FA as an indicator of developmental stress and phenotypic quality in D. ananassae are discussed.  相似文献   

12.
The use of developmental instability (an individual's failure to produce a consistent phenotype in a given environment) was evaluated to detect the effects of outplanting hatchery fish on wild salmon. Juvenile chinook salmon were collected in 1989, 1990, and 1991 from five drainages in the Snake River Basin. In each drainage we attempted to collect fish from streams with no hatchery supplementation (wild), naturally spawning fish from streams with hatchery supplementation (natural), and fish collected at a hatchery. Forty fish were collected per site and the number of elements in bilateral characters were counted on each side of the fish. Indices of fluctuating asymmetry (FA), a measure of minor, random deviations in perfect symmetry of bilateral counts, were calculated as an estimator of developmental instability. Analysis of character counts from seven paired characters revealed normal distributions. Only one of the characters displayed counts that were statistically larger on one side than the other, indicating that directional asymmetry (DA) or antisymmetry was not a major bias of FA. However, the means of all individual characters revealed a non-statistically significant left side bias. We analyzed our data using two indices of FA (FA1 and FA5) with different levels of sensitivity to DA. Differences in both FA indices were found among years, with collection sites in 1989 having significantly larger FA values than in 1991 (FA p < 0.01). Levels of FA among wild, natural, and hatchery fish were comparatively small (FA1 p = 0.17). This suggests developmental conditions were different in the first year of the study than in the last. The cause of these differences may be linked to either genetic or environmental variation or to gene—environment interactions, but the general population declines of salmon that occurred during this time obscures more specific conclusions.  相似文献   

13.
Abstract

Although developmental instability (DI), measured as fluctuating asymmetry (FA), is expected to be positively related to environmental stress and negatively to habitat quality, the pattern found here was the reverse. Developmental instability of leaf traits (leaf width and vein distances within a leaf) was estimated (using two indices of FA: FA4 and σi 2) and compared between three populations of Plantago major L. (Plantaginaceae) from northern Serbia. Two of the populations are from chronically polluted areas (Karaburma & Zemun), while Crni Lug is from an unpolluted, natural area. Results obtained using both FA indices were the same; higher asymmetry levels in the unpolluted area than in the polluted sites, were found for both traits. Between the two polluted sites, FA values were significantly higher in Karaburma site for vein distances within a leaf. Concerning differences in FA4 values between samples, in two cases, results are similar to those found for σi 2 values, for vein distances within leaf. These are the first quantitative data on P. major indicating that (i) plants living in the stressful sites are more symmetrical and (ii) leaf FA for plant species with wide ecological distribution such as P. major should be considered as an ‘index of habitat quality.’  相似文献   

14.
Fluctuating asymmetry (FA) is often used as a measure of developmental instability and has been proposed as an indicator of both environmental and genetic stress. However, the empirical evidence for the effects of stress on FA in plants is inconsistent, and there are few controlled experimental studies. We analyzed different distance- and shape-based measures of the fluctuating asymmetry of the leaves of clonally replicated self- and cross-pollinated lineages of Silene vulgaris (Moench) Garcke (Caryophyllaceae) grown under a control and seven different stress treatments (drought, copper, simulated herbivory, and two levels of nutrient deficiency and of shade). Overall, FA differed among stress treatments, but was not generally higher under stress and even reduced in some treatments. Different measures of FA were only weakly correlated. Inbreeding increased only one measure of leaf FA, and only under high stress intensities. Our findings suggest that in S. vulgaris leaf fluctuating asymmetry does not serve as an indicator of environmental stress or of genetic stress by inbreeding.  相似文献   

15.
Fluctuating asymmetry (FA), random deviations from perfect symmetry in a bilateral organism, has been widely used as a proxy for developmental instability in stressed populations. In order to test the utility of FA of resident freshwater threespine stickleback (Gasterosteus aculeatus) as a biomonitoring tool for contaminated sites, we compared levels of asymmetry of seven morphological traits of threespine stickleback collected from lakes at three islands with a history of military contamination and three islands with no military history, in the Aleutian Archipelago, Alaska. Traits examined include eye diameter, operculum width, pectoral fin ray number, pectoral fin width, lateral plate number, lateral plate length, and pelvic spine length. All morphometric traits demonstrated some degree of FA or directional asymmetry (DA), but the military history of a lake was not a predictor of the degree or type of asymmetry. Overall, the patterns of asymmetry were similar for all traits, irrespective of military contamination at a lake. Our results demonstrate that the suite of threespine stickleback traits measured are not suitable for examination of FA as a proxy for aquatic pollution in this region. DA also does not appear to be suitable as an indicator of aquatic pollution, but may instead be driven by local ecological factors such as predation.  相似文献   

16.
The level of fluctuating asymmetry (FA), which is defined as random deviations from perfect bilateral symmetry in the morphological traits of an organism, increases with increasing developmental instability, and it may be used as an indicator of environmental and/or genetic stresses. This study attempted to relate FA levels in the opercular plates of the barnacle Amphibalanus (Balanus) amphitrite with shore height and body trace metal concentrations. Barnacles were collected from both low and mid shores at six coastal locations with various degrees of marine pollution in Hong Kong. Four opercular traits, namely scutum length, tergum length, scutum width, tergum width were measured in the specimen while concentrations of five common trace metals (Cd, Cu, Cr, Mn and Zn) were determined in their body tissues using inductively coupled plasma-atomic emission spectrophotometry. Among the four traits, only tergum length and scutum width fulfilled the assumption of FA while their measurement errors were low. Across all sites, mid-shore A. amphitrite consistently exhibited a significantly higher FA level in scutum width than that in low-shore barnacles, but FA levels in tergum length were similar between the two shore heights. These results suggested that FA was trait-dependent, and mid-shore barnacles were possibly under high physical stress, such as desiccation and high temperature, leading to high developmental instability. Although no positive association was observed between FA and metal contamination in low-shore A. amphitrite, FA level in tergum length significantly increased with decreasing body concentration of manganese (Mn) in these barnacles. Such a negative relationship may be explained by the mechanism of bioaccumulation and physiological role of Mn in A. amphitrite with respect to the formation of barnacle shell plates. Handling editor: T. P. Crowe  相似文献   

17.
Gudgeon Gobio gobio (Cyprinidae) were collected monthly from the Vlara Stream (Czech Republic) during 2004 and examined for the presence of the ectoparasite Paradiplozoon homoion (Diplozoidae; Monogenea). Over 26% of P. homoion showed abnormalities of the attachment sclerites, indicating either a stressful environment or that the quality of the fish host was suboptimal for parasite development. Here, the hypotheses that parasite abundance and the occurrence of morphological abnormalities are correlated with fluctuating asymmetry (FA, the random deviation from the perfect bilateral symmetry) in its fish host were tested. The FA and morphological abnormality are estimators of developmental instability. To estimate fish developmental instability nine meristic and two morphometric bilateral characters on the right and the left sides of the fish were measured. In general, there was no correlation between mean fish FA and parasite abundance or the proportion of parasites with abnormalities. There was, however, a significant relationship between the proportion of abnormal P. homoion and the number of asymmetric meristic traits per individual fish. This study thus indicates that developmental instability of P. homoion , measured as morphological abnormality of the attachment apparatus, is only weakly dependent on the fish quality as measured by FA.  相似文献   

18.
本文分析了精神分裂症患者134例(男性70例,女性64例)和正常对照人群331例(男性170例,女性161例)皮纹a-b嵴线数波动性不对称的分布特征。结果表明:⑴精神分裂症患者双手皮纹a-b嵴线数明显低于正常对照组(P<0.01),表现出明显增高。  相似文献   

19.
Because plants are unable to move away from unfavourable habitats and environmental perturbations, leaf phenotypic plasticity facilitates light absorption and gas exchange. Oaks (Quercus spp.) are particularly known for their adaptability and plastic phenotypes, and leaf allometry and developmental instability may represent important mechanisms for their adaptation to environments and evolution. Because of its important role in the adaptation of plant populations to different environments, allometry can be involved in diversifying selection. Developmental instability is related to environmental perturbations and stresses by producing random deviations in structures characterized by bilateral symmetry, such as oak leaves. In addition, developmental instability can also arise from genetic bottlenecks or as a result of hybridization. The splitting of symmetric and asymmetric components of variation and their separate analysis allows the variability in leaf shape traits to be summarized, reducing the variation produced by developmental instability. The geometric morphometric approach is a useful method for the study of leaf asymmetry and allometric patterns. This method provides an important tool for the visualization of shape attributes that characterize species with highly variable leaf phenotypic patterns. In this study, leaf shape and size variability of three white oak species was investigated by means of a two‐dimensional landmark‐based method providing improved knowledge of variance partitioning, species discrimination, fluctuating asymmetry and allometric patterns of variation resulting from the different analyses. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 335–348.  相似文献   

20.
Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号