首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fodrin (brain spectrin) binds calmodulin and is susceptible to proteolysis by calcium-dependent protease I (CDP-I, calcium-activated neutral protease I, or calpain I). Both events involve the central region of the alpha-fodrin subunit, and calmodulin binding enhances the sensitivity of fodrin to CDP-I mediated proteolysis. Fragments of fodrin, generated chemically or proteolytically, which retain calmodulin binding activity have been identified and analyzed by two-dimensional peptide mapping and by direct protein sequencing. Both CDP-I and calmodulin interact with the terminal portion of the eleventh repetitive unit in fodrin, which is at the center of the molecule. CDP-I cleavage occurs between Tyr104 and Gly105 and preserves the calmodulin binding activity of the carboxyl-terminal fragment. In contrast, chymotryptic cleavage at Trp120 reduces the ability of this fragment to bind calmodulin, and tryptic cleavage beyond Trp120 completely eliminates calmodulin binding activity. It is concluded that Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala- Thr- Phe-Asn-Ser-Ile-Lys, a 24-residue peptide which bridges repeats 11 and 12 of brain alpha spectrin contains the high affinity calmodulin binding domain.  相似文献   

2.
Spectrin is composed of two nonidentical subunits, with the 240-kDa subunit of nonerythroid spectrin (fodrin) able to bind calmodulin (CaM) Ca2+-dependently. It was found that in the presence of chaotropic salts this binding site was still expressed, although the subunits of fodrin were dissociated. This has been exploited for separating the fodrin subunits rapidly and quantitatively by affinity chromatography on calmodulin-Sepharose. When bovine fodrin was dissolved in 2 M KI + 1 mM Ca2+ and applied to CaM-Sepharose the beta subunit (235-kDa) passed through unretarded whereas the alpha subunit (240-kDa) bound and could be eluted with ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. These subunits would reform the intact molecule when mixed and dialyzed.  相似文献   

3.
P A Roche  S V Pizzo 《Biochemistry》1987,26(2):486-491
When human alpha 2-macroglobulin (alpha 2M) binds proteinases, it undergoes subunit cleavage. Binding of small proteinases such as trypsin results in proteolysis of each of the four subunits of the inhibitor. By contrast, previous studies suggest that reaction of plasmin with alpha 2M results in cleavage of only two or three of the inhibitor subunits. In this paper, we demonstrate that the extent of subunit cleavage of alpha 2M is a function of plasmin concentration. When alpha 2M was incubated with a 2.5-fold excess of plasmin, half of the subunits were cleaved; however, at a 20-fold enzyme to inhibitor ratio, greater than 90% of the subunits were cleaved with no additional plasmin binding. This increased cleavage was catalyzed by free rather than bound plasmin. It is concluded that this "nonproductive" subunit cleavage is dependent upon the molar ratio of proteinase to inhibitor. The consequence of complete subunit cleavage on receptor recognition of alpha 2M-plasmin (alpha 2M-Pm) complexes was studied. Preparations of alpha 2M-Pm with only two cleaved subunits bound to the murine macrophage receptor with a Kd of 0.4 nM and 60 fmol of bound complex/mg of cell protein. When preparations of alpha 2-M-Pm with four cleaved subunits were studied, the Kd was unaltered but ligand binding increased to 140 fmol/mg of cell protein. The receptor binding behavior of the latter preparation is equivalent to that observed when alpha 2M is treated with small proteinases such as trypsin. This study suggests that receptor recognition site exposure is not complete in the alpha 2M-Pm complex with half of the subunits cleaved. Proteolytic cleavage of the remaining subunits of the inhibitor results in a further conformational change exposing the remaining receptor recognition sites.  相似文献   

4.
In cultured cerebellar granule cells, the total amount of fodrin alpha subunit increased 3-fold between 0 and 10 days in vitro and fodrin mRNA increased 5-fold. The exposure of cerebellar neurons to NMDA induced the accumulation of a 150 kd proteolytic fragment of fodrin. The NMDA-induced breakdown of fodrin was time-, concentration-, and Ca2(+)-dependent and was inhibited by APV, Mg2+, or the calpain I inhibitor N-acetyl-Leu-Leu-norleucinal. Kainate caused fodrin proteolysis through indirect activation of NMDA receptors. Quisqualate was ineffective. The NMDA-induced degradation of fodrin occurred under conditions that did not cause degeneration of cultured cerebellar neurons. These results show that Ca2+/calpain I-dependent proteolysis of fodrin is selectively associated with NMDA receptor activation; however, fodrin proteolysis per se does not play a causal role in NMDA-induced toxicity in cerebellar granule cells.  相似文献   

5.
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.  相似文献   

6.
C Y Wang  S K Kong  J H Wang 《Biochemistry》1988,27(4):1254-1260
Fodrin, an actin and calmodulin binding and spectrin-like protein present in many nonerythrocyte tissues, could be phosphorylated up to more than 1.5 mol of phosphate/mol of protein by a highly purified non-receptor-associated protein tyrosine kinase from bovine spleen. The protein phosphorylation was not affected by Ca2+/calmodulin or by F-actin. Km and Vmax values of the reaction were 91 nM and 0.35 nmol of P2 min-1 (mg of kinase)-1, respectively. Both subunits A and B of fodrin were phosphorylated, with the rate of subunit A phosphorylation much greater than that of subunit B phosphorylation. Tryptic phosphopeptide mapping of the phosphorylated subunits suggested that there were three major phosphorylation sites in subunit A and one in subunit B. Phosphotyrosylfodrin could be dephosphorylated by the calmodulin-stimulated phosphatase (calcineurin) in the presence of activating metal ions; Ni2+ was a much more effective activator than Mn2+ for this reaction. Fodrin phosphorylation by the spleen protein tyrosine kinase did not appear to alter the actin and calmodulin binding properties of the protein. On the other hand, the calmodulin-dependent stimulation of smooth muscle actomyosin Mg2+-ATPase by fodrin was enhanced by 101% +/- 3% (n = 3) upon fodrin phosphorylation. Ni2+-calcineurin, which was shown to effectively dephosphorylate the phosphotyrosyl residues on fodrin, could reverse the phosphorylation-enhanced Mg2+-ATPase stimulatory activity of fodrin.  相似文献   

7.
A new approach to studying the arrangement of subunits in the multienzyme complex tryptophan synthase is reported. Comparative studies of limited tryptic proteolysis of the alpha2beta2 complex and of the separate beta2 and alpha subunits show that subunit association inhibits two types of proteolysis which occur with the separate subunits: (i) cleavage of the beta2 subunit to two fragments with consequent loss of activity and (ii) complete degradation of the alpha subunit with loss of activity. Trypsin treatment of the alpha2beta complex does, however, result in at least one cleavage of the alpha subunit and yields an active alpha'2beta2 complex. The alpha'2beta2 complex can be resolved into an active beta2 subunit and an active alpha derivative termed alpha'. These two species can reassociate into the active alpha'2beta2 complex. alpha' derivative can be separated into a large fragment of Mr approximately 20,000 to 23,000 and a small peptide by polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

8.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

9.
In vitro phosphorylation of purified spectrin dimer was studied in the presence of Ca2+-calmodulin (CaM). CaM inhibited autophosphorylation of the beta subunit of spectrin. The inhibitory effect (65% at a 32-fold molar excess) appeared to be due to a weak interaction of CaM with spectrin. CaM was similarly effective in a phosphatase-stimulated autothiophosphorylation of the beta subunit with [gamma-35S]ATP. Hence, its inhibitory effect was not due to stimulation of a spectrin-associated phosphatase activity. Phosphorylation of spectrin by the catalytic subunit of a cAMP-dependent protein kinase occurred in both subunits (1984, FEBS Lett. 169, 323). CaM selectively inhibited a cAMP-dependent phosphorylation of the alpha subunit of spectrin to 30% at two CaM per spectrin. It was ineffective on the cAMP-dependent phosphorylation of the beta subunit up to a 32-fold molar excess. These results yield functional evidence for a CaM-spectrin interaction. They further suggest that CaM can regulate the extent of a cAMP-dependent phosphorylation of the alpha subunit of spectrin.  相似文献   

10.
Protease C1, an enzyme from soybean (Glycine max [L.] Merrill cv Amsoy 71) seedling cotyledons, was previously determined to be the enzyme responsible for the initial degradation of the alpha' and alpha subunits, but not the beta subunit, of beta-conglycinin storage protein. The sizes of the proteolytic products generated by the action of protease C1 suggest that the cleavage sites on the alpha' and alpha subunits of beta-conglycinin may be located in their N-terminal domain, which is not found in the beta subunit of beta-conglycinin. To check this hypothesis, storage proteins from other plant species that are homologous to either the alpha'/alpha or the beta subunit of beta-conglycinin were tested as substrates. As expected, the convicilin from pea (Pisum sativum), a protein homologous to the alpha' and alpha subunits of beta-conglycinin, was digested by protease C1. The vicilins from pea as well as vicilins from adzuki bean (Vigna angularis), garden bean (Phaseolus vulgaris), black-eyed pea (Vigna unguiculata), and mung bean (Vigna radiata), storage proteins that are homologous to the beta subunit of soybean beta-conglycinin, were not degraded by protease C1. Degradation of soybean beta-conglycinin involves a sequential attack of the alpha subunit at multiple sites, culminating in the formation of a stable intermediate of 53.5 kD and a final product of 48.0 kD. The cleavage sites resulting in this formation of the intermediates and final product were determined by N-terminal analysis. These were compared to the known amino acid sequences of the three beta-conglycinin subunits. Results showed these two polypeptides to be generated by proteolysis of the alpha subunit at regions bearing long strings of acidic amino acid residues.  相似文献   

11.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Proteolysis of tubulin and the substructure of the tubulin dimer   总被引:6,自引:0,他引:6  
The alpha and beta subunits of tubulin each have a single highly reactive site for a variety of proteases that divides each subunit into two unequal regions. The position of cleavage is not the same for alpha and beta, since alpha is consistently cleaved into about 38- and 14-kDa pieces, while beta is cleaved into about 34- and 21-kDa pieces. The larger fragment is amino-terminal in both subunits as shown: by size reduction of the smaller fragment by subtilisin (which cleaves at the extreme carboxyl-terminal end), but no change in size of the larger fragment; by the charge/mass ratios of the proteolytic fragments; and by sequence analysis which locates trypsin cleavage after residue 339 (alpha) and chymotrypsin cleavage after residue 281 (beta). Since this cleavage pattern of the alpha and beta subunits is found for very different proteases, we suggest that it is determined by structural features of the tubulin molecule. The two pieces of each subunit remain associated following cleavage. While both cleavage sites are exposed in the free dimer, assembly of dimers into microtubules or sheets protects the internal site against cleavage. By contrast, the carboxyl-terminal subtilisin-sensitive sites remain exposed. Based on these results we propose a model for the substructure of the tubulin dimer that accommodates internal cleavage in the dimer but not the polymer, access to the COOH termini in both forms, and the orientation of the dimer in the polymer.  相似文献   

13.
Calpain-catalyzed proteolysis of II-spectrin is a regulated event associated with neuronal long-term potentiation, platelet and leukocyte activation, and other processes. Calpain proteolysis is also linked to apoptotic and nonapoptotic cell death following excessive glutamate exposure, hypoxia, HIV-gp120/160 exposure, or toxic injury. The molecular basis for these divergent consequences of calpain action, and their relationship to spectrin proteolysis, is unclear. Calpain preferentially cleaves II spectrin in vitro in repeat 11 between residues Y1176 and G1177. Unless stimulated by Ca++ and calmodulin (CaM), betaII spectrin proteolysis in vitro is much slower. We identify additional unrecognized sites in spectrin targeted by calpain in vitro and in vivo. Bound CaM induces a second II spectrin cleavage at G1230*S1231. BetaII spectrin is cleaved at four sites. One cleavage only occurs in the absence of CaM at high enzyme-to-substrate ratios near the betaII spectrin COOH-terminus. CaM promotes II spectrin cleavages at Q1440*S1441, S1447*Q1448, and L1482*A1483. These sites are also cleaved in the absence of CaM in recombinant II spectrin fusion peptides, indicating that they are probably shielded in the spectrin heterotetramer and become exposed only after CaM binds alphaII spectrin. Using epitope-specific antibodies prepared to the calpain cleavage sites in both alphaII and betaII spectrin, we find in cultured rat cortical neurons that brief glutamate exposure (a physiologic ligand) rapidly stimulates alphaII spectrin cleavage only at Y1176*G1177, while II spectrin remains intact. In cultured SH-SY5Y cells that lack an NMDA receptor, glutamate is without effect. Conversely, when stimulated by calcium influx (via maitotoxin), there is rapid and sequential cleavage of alphaII and then betaII spectrin, coinciding with the onset of nonapoptotic cell death. These results identify (i) novel calpain target sites in both alphaII and betaII spectrin; (ii) trans-regulation of proteolytic susceptibility between the spectrin subunits in vivo; and (iii) the preferential cleavage of alphaII spectrin vs betaII spectrin when responsive cells are stimulated by engagement of the NMDA receptor. We postulate that calpain proteolysis of spectrin can activate two physiologically distinct responses: one that enhances skeletal plasticity without destroying the spectrin-actin skeleton, characterized by preservation of betaII spectrin; or an alternative response closely correlated with nonapoptotic cell death and characterized by proteolysis of betaII spectrin and complete dissolution of the spectrin skeleton.  相似文献   

14.
The activation of the coupling factor-latent ATPase enzyme by tryptic proteolysis may resemble the activation of many proenzymes by limited proteolysis. The beta (53 000 dalton) subunit of solubilized coupling factor-latent ATPase from Mycobacterium phlei was selectively lost in some trypsin-treated samples. Since a concomitant loss of ATPase activity was not observed, the beta subunit may not be essential for ATPase catalytic activity. Treatment of solubilized coupling factor with chymotrypsin rapidly produced an A'-type (61 000 dalton) species from the native alpha (64 000 dalton) subunits with partial activation of the APTase enzyme. Secondary chymotryptic cleavage yielded an A"-type (58 000 dalton) species and a less-active enzyme. Storage of fresh coupling factor samples at -20degreeC in the presence of 4 mM MgCl2 with several freeze-thaw cycles resulted in loss of ATPase activity without apparent change in alpha subunit structure. Storage at 4 degrees C in the presence or absence of MgCl2 both decreased ATPase activity and generated A'-type alpha subunit species. Since presence was suspected. The peptide bonds first cleaved by trypsin, chymotrypsin, and the unknown protease are all apparantly located within the same small segment of alpha subunit polypeptide chain.  相似文献   

15.
Epithelial sodium channels (ENaCs) mediate Na(+) entry across the apical membrane of high resistance epithelia that line the distal nephron, airway and alveoli, and distal colon. These channels are composed of three homologous subunits, termed alpha, beta, and gamma, which have intracellular amino and carboxyl termini and two membrane-spanning domains connected by large extracellular loops. Maturation of ENaC subunits involves furin-dependent cleavage of the extracellular loops at two sites within the alpha subunit and at a single site within the gamma subunit. The alpha subunits must be cleaved twice, immediately following Arg-205 and Arg-231, in order for channels to be fully active. Channels lacking alpha subunit cleavage are inactive with a very low open probability. In contrast, channels lacking both alpha subunit cleavage and the tract alphaAsp-206-Arg-231 are active when expressed in oocytes, suggesting that alphaAsp-206-Arg-231 functions as an inhibitor that stabilizes the channel in the closed conformation. A synthetic 26-mer peptide (alpha-26), corresponding to alphaAsp-206-Arg-231, reversibly inhibits wild-type mouse ENaCs expressed in Xenopus oocytes, as well as endogenous Na(+) channels expressed in either a mouse collecting duct cell line or primary cultures of human airway epithelial cells. The IC(50) for amiloride block of ENaC was not affected by the presence of alpha-26, indicating that alpha-26 does not bind to or interact with the amiloride binding site. Substitution of Arg residues within alpha-26 with Glu, or substitution of Pro residues with Ala, significantly reduced the efficacy of alpha-26. The peptide inhibits ENaC by reducing channel open probability. Our results suggest that proteolysis of the alpha subunit activates ENaC by disassociating an inhibitory domain (alphaAsp-206-Arg-231) from its effector site within the channel complex.  相似文献   

16.
The molecular conformation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) from the rat forebrain and cerebellum was studied by means of EM using a quick-freezing technique. Each molecule appeared to be composed of two kinds of particles, with one larger central particle and smaller peripheral particles and had shapes resembling that of a flower with 8 or 10 "petals". A favorable shadowing revealed that each peripheral particle had a thin link to the central particle. We predicted that the 8-petal molecules and 10-petal molecules were octamers and decamers of CaM kinase II subunits, respectively, each assembled with the association domains of subunits gathered in the center, and the catalytic domains in the peripheral particles. Binding of antibodies to the enzyme molecules suggested that molecules with 8 and 10 peripheral particles were homopolymers composed only of beta subunit and of alpha subunit, respectively, specifying that CaM kinase II consists of homopolymer of either alpha or beta subunits.  相似文献   

17.
We have previously reported that fodrin (beta subunit), tubulin (alpha subunit) and microtubule-associated proteins (MAPs; MAP2 and tau) are good substrates for the purified insulin receptor kinase (Kadowaki, T., Nishida, E., Kasuga, M., Akiyama, T., Takaku, F., Ishikawa, M., Sakai, H., Kathuria, S., and Fujita-Yamaguchi, Y. (1985) Biochem. Biophys. Res. Commun. 127, 493-500 and Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M. (1985) J. Biol. Chem. 260, 4016-4020). In this study, to investigate the substrate specificities of tyrosine kinases, we have examined the actions of the purified epidermal growth factor (EGF) receptor kinase and Rous sarcoma virus src kinase on purified microfilament- and microtubule-related proteins. Among microfilament-related proteins examined, the purified EGF receptor kinase phosphorylated the beta subunit, but not the alpha subunit, of fodrin on tyrosine residues with a Km below the micromolar range. The fodrin phosphorylation by the EGF receptor kinase was markedly inhibited by F-actin. In contrast, the purified src kinase preferentially phosphorylated the alpha subunit of fodrin on tyrosine residues. Fodrin phosphorylation by the src kinase was not inhibited by F-actin. Among microtubule proteins examined, MAP2 was the best substrate for the EGF receptor kinase. By contrast, src kinase favored phosphorylation of tubulin as compared to MAP2. The peptide mapping of MAP2 phosphorylated by the EGF receptor kinase and by the insulin receptor kinase produced very similar patterns of phosphopeptides, while that of MAP2 phosphorylated by the src kinase gave a distinctly different pattern. When the phosphorylation of the tubulin subunits was examined, the EGF receptor kinase preferred beta subunit to alpha subunit, but the src kinase phosphorylated both alpha and beta subunits to a similar extent. These results, together with our previous results, indicate that the substrate specificities of the EGF receptor kinase and the insulin receptor kinase are very similar, but not identical, while that of the src kinase is distinctly different from that of these growth factor receptor kinases.  相似文献   

18.
19.
The leukocyte integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) is a receptor for the extracellular matrix protein fibronectin and the endothelial adhesion protein VCAM-1. We have analyzed the biosynthesis and post-translational modifications of the two subunits of this receptor complex. The alpha 4 subunit was initially synthesized as a single-chain polypeptide that underwent the formation of complex endoglycosidase H-resistant oligosaccharide side chains and which could be proteolytically cleaved into two noncovalently associated fragments. The level and rate of alpha 4 subunit cleavage was dependent on the cell studied. The T cell tumor line HPB-ALL expressed both intact and fragmented alpha 4 on the cell surface. The interleukin-2-dependent natural killer line NK 3.3 and long term interleukin-2-dependent activated T lymphocytes cleaved the alpha 4 polypeptide earlier and more efficiently than did HPB-ALL cells and did not have detectable levels of intact alpha 4 on the cell surface. The proteolysis of alpha 4 was blocked by treating cells with either the lysosomotrophic amine NH4Cl or the carboxylic ionophore monensin. The presence of complex N-linked oligosaccharides did not seem to be necessary for alpha 4 cleavage or for binding of the alpha 4 beta 1 complex to a synthetic peptide corresponding to the binding site for this receptor on fibronectin.  相似文献   

20.
Subunit stoichiometry of retinal rod cGMP phosphodiesterase   总被引:6,自引:0,他引:6  
The cyclic GMP phosphodiesterase of the retinal rod is composed of three distinct types of polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). The gamma subunit has been shown to inhibit phosphodiesterase activity associated with alpha and beta. To investigate the subunit stoichiometry of the retinal phosphodiesterase, we have developed a panel of monoclonal and peptide antibodies that recognize individual phosphodiesterase subunits. By quantitative and immunochemical analysis of the purified subunits, we have shown that each phosphodiesterase molecule contains one copy each of alpha and beta subunit and two copies of gamma subunit. Moreover, gamma can be chemically cross-linked to both alpha and beta, but not to itself, suggesting that alpha and beta may each bind one gamma. The phosphodiesterase is fully activated when both copies of gamma were removed by proteolysis with trypsin. Upon recombination of the purified gamma subunit with the trypsin-activated phosphodiesterase containing alpha beta, the alpha beta gamma 2 stoichiometry is once again restored, with concomitant total inhibition of activity. Our results suggest that at least two activated transducin molecules are required to fully activate one molecule of phosphodiesterase in retinal rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号