首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV absorption difference spectrum of heavy meromyosin induced by adenylyl imidodiphosphate (AMP-PNP) was found to be changed by temperature. At higher temperatures, the shape of the difference spectrum resembled the ATP-form of difference spectrum induced by ATP. At lower temperatures, a different shape was observed, resembling that induced by ADP. This temperature transition was found in the presence of both MgCl2 and MnCl2. The transition temperatures, were 21 degrees and 9 degrees in the presence of MnCl2 and MgCl2, respectively. A similar temperature dependence was observed with the difference spectrum induced by ATP at the steady state. The transition temperatures in this case were 11 degrees and 4.5 degrees in the presence of MnCl2 and MgCl2, respectively. The similarity of the effects of the two kinds of divalent cation on both transitions indicates that the temperature induced transition between two species of heavy meromyosin-AMP-PNP complex mimics the step in APTase [EC 3.6.1.3] reaction in which the intermediate complex showing the ATP-form of difference spectrum changes to that showing the ADP-form. The equilibrium constant of the decay step of the ATP-form of difference spectrum to the ADP-form in ATPase is, therefore, thought to be highly temperature dependent. Thermodynamic parameters were calculated for the transition between the two species of heavy meromyosin AMP-PNP complex. Large decreases in enthalpy and entropy were observed, while the standard free energy change was small. The results suggest that the intermediate showing the ATP-form of difference spectrum hardly changes to the forward direction in the ATPase reaction at higher temperature. The complex appears to be so stable in the steady state that almost all the myosin is present as this complex. The decay step in ATPase of the difference spectrum from the ATP-form to to the ADP-form may be coupled to muscular contraction. The temperature induced transition of heavy meromyosin AMP-PNP complex may, therefore, provide information concerning the state of myosin in active muscles.  相似文献   

2.
The UV absorption difference spectrum of heavy meromyosin induced by ATP was measured at various temperatures. At higher temperatures, the difference spectrum formed rapidly after adding ATP and continued steadily during the steady state which we have called the ATP-form of difference spectrum. At lower temperatures, the ATP-form of difference spectrum decayed into the other form before the steady state was attained. This was identical to the difference spectrum obtained by adding ADP and has been called the ADP-form of difference spectrum. At intermediate temperatures, biphasic decay was observed. The results indicate that the dominant intermediate at the steady state is altered from the one showing the ATP-form of difference spectrum at higher temperatures to that showing the ADP-form at lower temperatures. The population of the two intermediates depends on the temperature between the two extremes. This temperature-induced transition was observed in the presence of any divalent cation such as Mg2+, Mn2+, or Ca2+. A similar transition was observed with the difference spectrum induced by ITP in the presence of MgCl2. The pH dependence of the single early decay of the ATP-induced difference spectrum was measured in the presence of MnCl2 at 1 degree. The apparent rate constant of the decay showed a biphasic pH dependence, having the same shape as the pH activity curve of ATPase [EC 3.6.1.3] observed at higher temperatures. The rate determining step for the steady state ATPase at higher temperatures is thought to be the step of changing from the intermediate complex showing the ATP-form of difference spectrum to that showing the ADP-form. This is inconsistent with our previous mechanism (Yazawa, M. et al. (1973) J. Biochem. 74, 1107-1117). The rate determining step at lower temperatures was assigned as a step of ADP dissociation.  相似文献   

3.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

4.
The interaction of magnesium-ADP with skeletal muscle heavy meromyosin has been studied by measuring the accompanying release of protons. Total pH changes of the order of 0.03 were involved, and measurements were performed with a discrimination of some ten-thousandths of a pH unit. At pH 8.0 and 25 degrees C about 0.5 mol of protons per mol of heavy meromyosin is released at saturation. A stoichiometry of binding close to 2 mol of ADP per mol of protein was found, with a binding constant, obtained from the proton release titration curve (pH 8.0, 25 degrees C), of 2 X 10(5) M-1. At 5 degrees C the release of protons per mole is slightly greater, and the binding constant is somewhat increased, reflecting a negative enthalpy of binding. Similar proton release behavior is observed in the presence of manganous ions in place of magnesium. The liberation of protons is thus unrelated to the temperature-dependent isomerization of myosin in the presence of substrate. Alkylation of a reactive thiol group (SH1) does not change the proton liberation at pH 8.0. From the pH dependence of proton release, the association constant of heavy meromyosin with magnesium-ADP at other pH values can be inferred and shows an appreciable rise as the pH increases. The pH-proton release profile also allows the pK of the ionizing groups perturbed by the ligand to be deduced. At least two groups ionizing above pH 7 and one below are involved. Their pK's in the unperturbed state are assigned as 8.5, 9.3, and about 6.6, respectively; they are displaced in the complex to about 8.0, 9.1, and 6.3. A relation to the pH-activity profile of myosin ATPase is indicated. The pH-proton release profile is somewhat changed when the SH1 group is alkylated. Measurements with potassium-ADP, in the absence of magnesium, show that at pH 8.0 there is no proton release but rather a sizeable proton absorption (about 0.5 mol of protons per mol of heavy meromyosin). The association constant derived from the titration curves (pH 8.0, 25 degrees C) is 3 X 10(4) M-1.  相似文献   

5.
The ATPase (EC 3.6.1.3) activity of 30 S dynein from Tetrahymena cilia was remarkably stimulated by porcine brain tubulin at pH 10. The activity increased with increasing concentration of tubulin until the molar ratio of tubulin dimer to 30 S dynein reached approx. 10. The optimum of the ATPase activity of 30 S dynein in the presence of tubulin was 1-2 mM for MgCl2 and 2 mM for CaCl2. Increasing ionic strength gradually inhibited the stimulation effects of tubulin. Activation energies of 30 S dynein in the presence and absence of tubulin were almost the same. At the temperatures beyond 25 degrees C stimulation effects of tubulin disappeared. ATP was a specific substrate even in the presence of tubulin. In kinetic investigations parallel reciprocal plots were observed in a constant ratio of divalent cations to ATP of 2, indicating that tubulin was less tightly bound to 30 S dynein in the presence of ATP than the absence. The similar results were obtained at pH 8.2. 14 S dynein and the 12 S fragment which have poor ability to recombine with outer fibers were also activated with brain tubulin.  相似文献   

6.
We have investigated the interaction of divalent ions with chromatin towards a closer understanding of the role of metal ions in the cell nucleus. The first row transition metal ion chlorides MnCl2, CoCl2, NiCl2 and CuCl2 lead to precipitation of chicken erythrocyte chromatin at a significantly lower concentration than the alkali earth metal chlorides MgCl2, CaCl2 and BaCl2. A similar distinction can be made for the compaction of chromatin to the "30 nm" solenoid higher order structure which occurs at lower MeCl2 concentration in the first group but at the same MeCl2 concentration within each group. In other experiments in which mixed solutions of NaCl and of MgCl2 were examined, it is shown that increasing NaCl concentration leads to increasing solubility in the presence of MgCl2. Best compaction of chromatin was obtained at 40 mM NaCl and 0.8 mM MgCl2 at a value A260 approximately 0.8. Similar experiments were undertaken with mixtures of NaCl and MnCl2.  相似文献   

7.
Crosslinking of F-actin by a bifunctional reagent glutaraldehyde resulted in a marked decrease of viscosity and length of F-actin filaments. The extent and rate of superprecipitation of actomyosin reconstituted from the modified actin were lower than those of unmodified actin-myosin complex, but activation of heavy meromyosin ATPase by the crosslinked actin was higher than by unmodified one. Heavy meromyosin ATPase activated by the crosslinked actin was distinctly less dependent on KCl concentration than that activated by unmodified actin. Turbidity of the modified acto-heavy meromyosin in the presence of ATP exceeded the sum of turbidities of actin and heavy meromyosin, whereas in the case of unmodified acto-heavy meromyosin the turbidity was comparable to that for noninteracting system. The difference in activation of heavy meromyosin. ATPase by the cross-linked and unmodified actin, clearly seen at room temperature, significantly diminished when temperature was lowered to 0 degrees C.  相似文献   

8.
Ion binding and lipid ionization of the acidic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) in monolayers was studied by measuring the lateral pressure Pi as a function of the molecular area A at the air/water interface at different temperatures. The pH of the subphase (pH 2 and 7) and the ionic strength (NaCl) was varied. In addition, different divalent cations (1mM MgCl2, CaCl2 and SrCl2, pH 7) were added. DMPG is partly protonated on pure water at pH 7. An increase in the NaCl concentration in the subphase leads to film expansion. This effect is caused by an ionization of the headgroup of DMPG, i.e. a shift of the apparent pK. More condensed films are obtained on pure water at pH 2, due to the reduction of electrostatic repulsion by headgroup protonation and the possibility for the formation of a hydrogen bonding network. The divalent cations Mg2+, Ca2+ and Sr2+ interact differently with a DMPG monolayer in pure water at pH 7. In the presence of 1mM CaCl2 a condensation of the DMPG film is induced, whereas an expansion of the monolayer is observed in the presence of Mg2+ and Sr2+. Two counteracting effects are operative: (a) ionization of the headgroup due to electrostatic screening leads to film expansion and (b) binding of the divalent cations to the lipid headgroups leads to condensation. The latter effect is more pronounced in the case of Ca2+, whereas the binding of Mg2+ and Sr2+ to DMPG is weaker. Site-specific cation binding has to be assumed in addition to electrostatic effects.  相似文献   

9.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

10.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have used alpha-chymotrypsin as an enzyme-probe to detect local melting in the subfragment-2 region of the cross-bridges of rigor myofibrils and glycerinated psoas fibers. The kinetics of proteolysis and the sites of cleavage were determined at various temperatures over the range 5 to 40 degrees C by following the decay of the myosin heavy chain and the rates of appearance of light meromyosin fragments, using electrophoresis on sodium dodecyl sulfate-containing polyacrylamide gels. Cleavage occurs primarily at the 72,000 Mr and 64,000 Mr (per polypeptide chain from the C terminus of myosin) sites within the light meromyosin-heavy meromyosin hinge domain of the subfragment-2 region, under all experimental conditions. At pH 8.2 to 8.3 and at low divalent metal ion (0.1 mM), where the actin-bound cross-bridges are thought to be released from the thick filament surface, the intrinsic cleavage rate constant (k) increases markedly as the temperature is raised. This suggests substantial thermal destabilization of the released cross-bridge in the intact contractile apparatus. Addition of divalent metal ion (10 mM) lowers the cleavage rate and shifts the k versus temperature profile to higher temperatures. Normalized rate constants for chymotryptic cleavage within the subfragment-2 hinge region of released cross-bridges (pH 8.2, low divalent metal) of rigor fibers were markedly lower than activated fibers at all temperatures investigated (5 to 40 degrees C). Results show that conformational melting within the subfragment-2 hinge region is amplified on activation and is well above that observed when the actin-attached rigor bridge is passively released from the thick filament surface.  相似文献   

12.
1. Grinding of epimastigotes of Trypanosoma cruzi with glass powder in a mortar yielded a Mg2+-activated adenosine triphosphatase (ATPase) preparation which was highly sensitive to oligomycin. 2. Chloroform treatment of the particles resulted in the solubilization of an ATPase which was (a) activated by MgCl2; (b) slightly inhibited by CaCl2; (c) activated by sulphite and bisulphite; (d) had an optimum pH of 7.6; and (e) had a Km for ATP of 2.1 mM (in the presence of 4 mM MgCl2). 3. The solubilized enzyme was insensitive to oligomycin and leucinostatin, which inhibited the membrane-bound ATPase, though inhibited by efrapeptin and quercetin. 4. The results indicate that the chloroform-extracted enzyme is a soluble F1-ATPase similar to those isolated from mammalian mitochondria.  相似文献   

13.
A comparison of kinetic parameters (Km(app) and V) of hydrolysis by heavy meromyosin of natural (ATP and ITP) and modified nucleoside triphosphates showed that in the K+, EDTA-ATPase conformation the enzyme exhibited a higher selectivity towards the structure of the substrate nucleoside moiety than in the case of the Ca2+-stimulated nucleoside triphosphatase activity. In the presence of Ca2+, all the N1- and N6-substituted analogs of ATP as well as ITP, etheno-ATP and the dialdehyde derivative of ATP were hydrolyzed at a high rate irrespective of their markedly decreased affinity for heavy meromyosin. In the presence of K+, EDTA the ATPase activity showed a tendency for a total decrease of the analog affinity for nucleoside triphosphates, i.e., the impossibility of tight binding of the substrate phosphate residues to the protein in the absence of bivalent cations, which was concomitant with an increase in the hydrolysis rate. However, it was found that only in N1-substituted analogs any appreciable changes in the substrate properties were absent. All the other nucleoside triphosphates tested (N6-carboxy-methoxy-ATP, N6-(N'-acetylaminoethoxy)-ATP, etheno-ATP, ITP and the dialdehyde derivative of ATP having a rupture in the ribose ring) lost their ability to be hydrolyzed by heavy meromyosin. The experimental results as well as the literature data are suggestive of differences in the spatial structure of the active center in two different myosin conformations associated with a high catalytic activity, i.e., K+, EDTA-ATPase and Ca2+-ATPase.  相似文献   

14.
The soluble ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus underwent a major unfolding transition when solutions of the enzyme at pH 7.5 were heated. The midpoint occurred at 46 degrees C when monitored by changes in enzymic activity and intrinsic fluorescence, and at 49 degrees C when monitored by circular dichroism. The products of thermal denaturation retained much secondary structure, and no evidence of subunit dissociation was detected after cooling at 20 degrees C. The thermal transition was irreversible, and thiol groups were not involved in the irreversibility. The presence of ATP, adenylyl imidodiphosphate, CaCl2 or higher concentrations of ATPase conferred stability against thermal denaturation, but did not prevent the irreversibility one denaturation had taken place. In the presence of guanidinium chloride, thermal denaturation occurred at lower temperatures. The midpoints of the transition were 45 degrees C in 0.25 M-, 38 degrees C in 0.5 M-and 30 degrees C in 0.75 M-denaturant. In the highest concentration of guanidinium chloride a similar unfolding transition induced by cooling was observed. Its midpoint was 9 degrees C, and the temperature of maximum stability of the protein was 20 degrees C. The discontinuities occurring the the Arrhenius plots of the activity of this enzyme had no counterpart in variations in the far-u.v. circular dichroism or intrinsic fluorescence of the protein at the same temperature.  相似文献   

15.
The effects of the divalent cations Mg2+, Mn2+ and Ca2+ on the Brownian rotational motion of fluorescently labeled myosin, heavy meromyosin and myosin subfragment-1 were measured by the method of time-resolved fluorescence depolarization. When Mg2+ was added to solutions of myosin or heavy meromyosin and EDTA, their rotational mobility increased. Ca2+ had no effect. Mn2+ increased the mobility of heavy meromyosin but decreased that of myosin. None of these divalent cations effected the mobility of subfragment-1. The binding of heavy meromyosin to actin was affected very little by Mg2+ or EDTA over a wide range of conditions. Divalent cations appear to change the swivel about which the heads of myosin rotate, presumably by binding to light chain 2 (also called DTNB light chain). However, the heads are still able to bind actin in nearly the same way whether Mg2+ is present or not. The concentration of free Mg2+ for the mid-point of the change in heavy meromyosin mobility is in good agreement with that for EDTA activation of ATPase activity. This suggests that EDTA activation is due to removal of Mg2+ bound to myosin itself.  相似文献   

16.
The binding of 125I-labeled muscle tropomyosin to Acanthamoeba and muscle actin was studied by ultracentrifugation and by the effect of tropomyosin on the actin-activated muscle heavy meromyosin ATPase activity. Binding of muscle tropomyosin to Acanthamoeba actin was much weaker than its binding to muscle actin. For example, at 5 mM MgCl2, 2 mM ATP, and 5 micronM actin, tropomyosin bound strongly to muscle actin but not detectably to Acanthamoeba actin. When the concentration of actin was raised from 5 micronM to 24 micronM in the presence of 80 mM KCl, the binding of tropomyosin to Acanthamoeba actin approached its binding to muscle actin. As with muscle actin, the addition of muscle heavy meromyosin in the absence of ATP induced binding of tropomyosin in Acanthamoeba actin under conditions were binding would otherwise not have occurred. The most striking difference between the interactions of muscle tropomyosin with the two actins, however, was that under conditions where tropomyosin was found to both actins, its stimulated the Acanthamoeba actin-activated heavy meromyosin ATPase but inhibited the muscle actin-activated heavy meromyosin ATPase.  相似文献   

17.
A novel lectin from the wild mushroom Polyporus adusta   总被引:3,自引:0,他引:3  
A lectin with antiproliferative activity toward tumor cell lines and mitogenic activity toward splenocytes was isolated from the mushroom Polyporus adusta. The lectin was composed of two identical subunits each with a molecular weight of 12 kDa. It was adsorbed on both DEAE-cellulose and Q-Sepharose and unadsorbed on CM-Sepharose. The hemagglutinating activity of the lectin was inhibited by turanose and by a large variety of other carbohydrates. It was adversely affected in the presence of NaOH or HCl at a concentration of 7.5mM and above, and when the ambient temperature was raised above 70 degrees C. All divalent and trivalent metallic chlorides tested at 1.25-10mM including CaCl(2), MgCl(2), ZnCl(2), MnCl(2), and AlCl(3), did not alter the hemagglutinating activity of the lectin. FeCl(3) at 10mM caused the hemagglutinating activity to increase by 100%, but it did not change the lectin activity when tested at lower concentrations up to 5mM.  相似文献   

18.
Role of divalent metal ions in the hammerhead RNA cleavage reaction.   总被引:32,自引:0,他引:32  
S C Dahm  O C Uhlenbeck 《Biochemistry》1991,30(39):9464-9469
A hammerhead self-cleaving domain composed of two oligoribonucleotides was used to study the role of divalent metal ions in the cleavage reaction. Cleavage rates were measured as a function of MgCl2, MnCl2, and CaCl2 concentration in the absence or presence of spermine. In the presence of spermine, the rate vs metal ion concentration curves are broader, and lower concentrations of divalent ions are necessary for catalytic activity. This suggests that spermine can promote proper folding of the hammerhead and one or more divalent ions are required for the reaction. Six additional divalent ions were tested for their ability to support hammerhead cleavage. In the absence of spermine, rapid cleavage was observed with Co2+ while very slow cleavage occurred with Sr2+ and Ba2+. No detectable specific cleavage was observed with Cd2+, Zn2+, or Pb2+. However, in the presence of 0.5 mM spermine, rapid cleavage was observed with Zn2+ and Cd2+, and the rate with Sr2+ was increased, indicating that while these three ions could not promote proper folding of the hammerhead they were able to stimulate cleavage. These results suggest certain divalent ions either participate directly in the cleavage mechanism or are specifically involved in stabilizing the tertiary structure of the hammerhead. Additionally, an altered divalent metal ion specificity was observed when a unique phosphorothioate linkage was inserted at the cleavage site. The substitution of a sulfur for a nonbridging oxygen atom substantially reduced the affinity of an important Mg2+ ion necessary for efficient cleavage. In contrast, the reaction proceeds normally with Mn2+, presumably due to its ability to coordinate with both oxygen and sulfur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The influence of Ca2+ on the enzymatic and physical properties of smooth muscle myosin was studied. The actin-activated ATPase activity of phosphorylated gizzard myosin and heavy meromyosin is higher in the presence of Ca2+ than in its absence, but this effect is found only at lower MgCl2 concentrations. As the MgCl2 concentration is increased, Ca2+ sensitivity is decreased. The concentration of Ca2+ necessary to activate ATPase activity is higher than that required to saturate calmodulin. The similarity of the pCa dependence of ATPase activity and of Ca2+ binding to myosin and the competition by Mg2+ indicate that these effects involved the Ca2+-Mg2+ binding sites of gizzard myosin. For the actin dependence of ATPase activity of phosphorylated myosin at low concentrations of MgCl2, both Vmax and Ka are influenced by Ca2+. The formation of small polymers by phosphorylated myosin in the presence of Ca2+ could account for the alteration in the affinity for actin. For the actin dependence of phosphorylated heavy meromyosin at low MgCl2 concentrations, Ca2+ induces only an increase in Vmax. To detect alterations in physical properties, two techniques were used: viscosity and limited papain hydrolysis. For dephosphorylated myosin, 6 S or 10 S, Ca2+-dependent effects are not detected using either technique. However, for phosphorylated myosin the decrease in viscosity corresponding to the 6 S to 10 S transition is shifted to lower KCl concentrations by the presence of Ca2+. In addition, a Ca2+ dependence of proteolysis rates is observed with phosphorylated myosin but only at low ionic strength, i.e. under conditions where myosin assumes the folded conformation.  相似文献   

20.
Transient kinetic studies of Mg(2+)-dependent heavy-meromyosin ATPase (adenosine triphosphatase) were done by monitoring the release of both ADP and P(i) into the reaction medium by using linked assay systems. The release of P(i) was monitored by its quantitative transfer to ADP, with concomitant reduction of NAD(+) in the presence of d-glyceraldehyde 3-phosphate, d-glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. The dissociation rates of the products, ADP and P(i), from heavy meromyosin were shown to be faster than the rate-controlling process, which occurs after the initial bond cleavage of ATP. The chromophoric ATP analogue, 6-mercapto-9-beta-d-ribofuranosylpurine 5'-triphosphate (thioATP) was used as a substrate and spectral changes associated with a single turnover of heavy meromyosin could be assigned to elementary processes of the mechanism. It was shown that the dissociation rate of thioADP was not the rate-controlling process of the thioATPase, whose catalytic-centre activity was 7.6 times that of the ATPase at pH8. The dissociation rate of ADP from heavy meromyosin was measured by using thioATP as displacing agent and was found to be 2.3s(-1), which is about 50 times the catalytic-centre activity of the ATPase at pH8. Transient kinetic studies with chromophoric adenosine phosphate analogues have general application for kinases and ATPases both in characterizing the chemical states of the intermediates and in delineating the elementary processes of the enzyme mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号