首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate surface glycoprotein changes during post-testicular maturation, plasma membranes were isolated from proximal caput, distal caput, and cauda epididymal rat spermatozoa. Membrane glycoproteins were identified on Western blots of SDS-PAGE fractionated samples using biotinylated lectins and Vecta-stain reagents; these were compared to glycoproteins present in cauda epididymal luminal fluid. Lens culinaris agglutinin, Pisum sativum agglutinin, peanut agglutinin, wheat germ agglutinin, Ricinus communis agglutinin, Ulaex europaeus agglutinin, and Dolichol biflorus agglutinin each bound a specific subset of the polypeptides present. Several types of glycoprotein changes were noted including their appearance, loss, alteration of staining intensity, and alteration of electrophoretic mobility. Some maturation-dependent sperm surface glycoproteins co-migrated with glycoproteins present in epididymal fluid. This approach of direct analysis of the glycoproteins in purified plasma membranes identifies a broader spectrum of maturation-related surface changes occurring within the epididymis than are noted with surface labeling procedures.  相似文献   

2.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

3.
During the passage through the epididymis, testicular spermatozoa are directly exposed to epididymal fluid and undergo maturation. Proteins and glycoproteins of epididymal fluid may be adsorbed on the sperm surface and participate in the sperm maturation process, potentially in sperm capacitation, gamete recognition, binding and fusion. In present study, we separated proteins from boar epididymal fluid and tested their binding abilities. Boar epididymal fluid proteins were separated by size exclusion chromatography and by high-performance liquid chromatography with reverse phase (RP HPLC). The protein fractions were characterized by SDS-electrophoresis and the electrophoretic separated proteins after transfer to nitrocellulose membranes were tested for the interaction with biotin-labeled ligands: glycoproteins of zona pellucida (ZP), hyaluronic acid and heparin. Simultaneously, changes in the interaction of epididymal spermatozoa with biotin-labeled ligands after pre-incubation with epididymal fluid fractions were studied on microtiter plates by the ELBA (enzyme-linked binding assay) test. The affinity of some low-molecular-mass epididymal proteins (12-17 kDa and 23 kDa) to heparin and hyaluronic acid suggests their binding ability to oviductal proteoglycans of the porcine oviduct and a possible role during sperm capacitation. Epididymal proteins of 12-18 kDa interacted with ZP glycoproteins. One of them was identified as Crisp3-like protein. The method using microtiter plates showed the ability of epididymal fluid fractions to change the interaction of the epididymal sperm surface with biotin-labeled ligands (ZP glycoproteins, hyaluronic acid and heparin). These findings indicate that some epididymal fluid proteins are bound to the sperm surface during epididymal maturation and might play a role in the sperm capacitation or the sperm-zona pellucida binding.  相似文献   

4.
The plasma membrane of spermatozoa undergoes substantial remodeling during passage through the epididymal duct, principally because of changes in phospholipid composition, exchange of glycoproteins with epididymal fluid, and processing of existing membrane proteins. Here, we describe the interaction of an epididymal glycoprotein recognized by monoclonal antibody 2D6 with the plasma membrane of rat spermatozoa. Our goals have been to understand more about the mechanism of secretion of epididymal glycoproteins, how they interact with the sperm's plasma membrane, and their disposition within it. Reactivity to 2D6 monoclonal antibody was first detectable in principal cells in the distal caput epididymidis and as a soluble high-molecular-weight complex in the secreted fluid. It was not associated with membranous vesicles in the duct lumen. On cauda spermatozoa 2D6 monoclonal antibody recognized a 24-kDa glycoprotein (the subunit of a disulfide cross-linked homodimer of 48 kDa) that was present on the plasma membrane overlying the sperm tail. Binding of 2D6 to immature spermatozoa in vitro was cell-type specific but not species specific, and the antigen could only be extracted from cauda spermatozoa with detergents. Sequencing studies revealed that the 24-kDa glycoprotein was a member of the beta-defensin superfamily of small pore-forming glycopeptides of which several others (ESP13.2, Bin1b, E-2, EP2, HE2) are found in the epididymis. This evidence suggests that some epididymal glycoproteins are secreted into the luminal fluid in a soluble form and bind to specific regions of the sperm's surface via hydrophobic interactions. Given the antimicrobial function of beta-defensins, they have a putative role in protecting spermatozoa and the epididymis from bacterial infections.  相似文献   

5.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

6.
A polypeptide with molecular mass of 17 kDa has been partially purified and identified as a major secretory glycoprotein in the rat epididymis. It is phosphorylated and contains high mannose-type oligosaccharides with 5 and 6 mannose units predominantly. These sugar residues are sufficiently exposed in the molecule to be released by endo-beta-N-acetylglucosaminidase H without prior denaturation or protease digestion. Specific binding of the glycoprotein to testicular spermatozoa was demonstrated with Ka 0.2 x 10(9) M-1 and 17,200 sites per cell, while no binding to epididymal spermatozoa was detectable. Direct labeling of surface proteins on cauda epididymis spermatozoa revealed the presence of a major band of 16.2 kDa, which may be equivalent to GP17. The interaction of the epididymal secretory protein with sperm suggests a possible role in the maturation process.  相似文献   

7.
We have identified an 80 kDa protein in ejaculated bull spermatozoa (p80) which is found in acrosomal and post-acrosomal areas of the head. It has a hyaluronidase activity and shares homologies with PH-20, a sperm surface glycoprotein involved in sperm-egg interaction. The aim of the present study was to characterize bull sperm p80 protein at the nucleic and amino acid levels to determine whether it is the bovine PH-20 ortholog. The complete nucleotide sequence determined by RT-PCR, 3' and 5' RACE show that bull p80, displays identity with the PH-20 nucleotide and amino acid sequences. Messenger RNA and protein expressions determined by Northern blot and immunohistochemistry revealed that the protein is testicular (expressed in spermatocytes and spermatids). The localization of p80 on spermatozoa, determined by indirect immunofluorescence using a monoclonal antibody, shows the protein in acrosomal and post acrosomal areas of the head with an increase in the signal intensity as sperm progress through the epididymis. Post-translational modifications of the protein were investigated during the epididymal maturation by Western blot on protein extracts from sperm collected in the caput, corpus and cauda portions of bull epididymis. Glycolysation status of sperm p80 protein on proteins from ejaculated and epididymidal sperm was investigated. Result show that the glycosylation status is modified as spermatozoa migrate through the epididymis. Hyaluronidase activity evaluated in protein extracts from spermatozoa of the three different epididymal sections revealed that the activity is higher at pH 7 than 4 and is not affected by epididymal maturation. These data strongly suggest that p80 is the bovine PH-20.  相似文献   

8.
Even though the epididymis produces an environment promoting sperm maturation and viability, some sperm do not survive transit through the epididymal tubule. Mechanisms that segregate the epididymal epithelium and/or the viable sperm population from degenerating spermatozoa are poorly understood. We report here the identification and characterization of HEP64, a 64-kDa glycoprotein secreted by principal cells of the corpus and proximal cauda epididymidis of the hamster that specifically binds to and coats dead/dying spermatozoa. The HEP64 monomer contains approximately 12 kDa carbohydrate and, following chemical deglycosylation, migrates as a approximately 52-kDa polypeptide. Both soluble (luminal fluid) and sperm-associated HEP64 are assembled into disulfide-linked high molecular weight oligomers that migrate as a doublet band of 260/280 kDa by nonreducing SDS-PAGE. In the epididymal lumen, HEP64 is concentrated into focal accumulations containing aggregates of structurally abnormal or degenerating spermatozoa, and examination of sperm suspensions reveals that HEP64 forms a shroudlike coating surrounding abnormal spermatozoa. The HEP64 glycoprotein firmly binds degenerating spermatozoa and is not released by either nonionic detergent or high salt extraction. Electron microscopic immunocytochemistry demonstrates that HEP64 localized to an amorphous coating surrounding the abnormal spermatozoa. The potential mechanisms by which this epididymal secretory protein binds dead spermatozoa as well as its possible functions in the sperm storage function of the cauda epididymidis are discussed.  相似文献   

9.
The functional maturation of spermatozoa during epididymal transit in mammals accompanies the changes in their plasma membrane due to the binding or removal of proteins or interactions with the proteases, glycosidases and glycosyltransferases present in the epididymis. In order to study the surface changes in spermatozoa during their maturation in the epididymis, we previously established several monoclonal antibodies against the 54 kDa sialoglycoprotein of mouse cauda epididymal spermatozoa, which gradually increased the expression of antigenic determinants during epididymal transit. One of these monoclonal antibodies, MC121, reacted with mouse sperm glycoproteins on a polyvinylidene fluoride membrane after desialylation of the glycoproteins, and the treatment of the desialylated sperm glycoproteins with β-N-acetylhexosaminidase greatly decreased the expression of the antigenic determinants. In addition to reacting with mouse cauda epididymal spermatozoa, MC121 reacted with human red blood cells (hRBCs). MC121 induced agglutination of sialidase-treated hRBCs and stained hRBCs fixed with formalin vapor much more heavily than it stained hRBCs fixed with methanol. The thin layer chromatography (TLC) immunostaining of the sialidase-treated lipids of hRBCs with MC121 suggested that the epitope-bearing molecule is a glycosphingolipids (GSL), and that MC121 reacts with a pentaose-GSL. Analysis of sialidase-treated GSLs by TLC-Blot-Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI TOF MS) revealed that the GSL bound by MC121 was [HexNAc][HexNAc + Hex][Hex][Hex]-Cer. The lipid band stained with mAb TH2, which is specific for a GSL, GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-ceramide. These results indicated that the epitope to which MC121 binds is present in a neolacto-series GSL, IV3GalNAcβ-nLc4Cer2 sequence.  相似文献   

10.
小鼠附睾头精子获得与卵子质膜融合能力的物质基础研究   总被引:1,自引:0,他引:1  
随着精子在附睾中的转运,它们与卵子质膜的融合能力逐渐增加。怩证明2附睾体和附睾尾的精子均具有相当高的膜融合能力,而附睾头中的精了奶少能与卵子质膜融合,这是还说明附睾头中的精子不具备与云透明带卵子融合的物质条件呢?利用附睾结扎留并延长体外获能时间,可使附睾头远端精子的融合能力明显地提高;在精子培养液中加入ATP,并延长精卵共培养时间,也可使一少部分附睾头近端的精子获得与卵子质膜融合的能力。这表明附睾  相似文献   

11.
The cell surface glycoproteins of goat epididymal maturing spermatozoa have been investigated using lectins as surface probes that interact with specific sugars with high affinity. Concanavalin A (ConA) and wheat-germ agglutinin (WGA) showed high affinity for mature cauda epididymal sperm agglutination, whereas RCA2, kidney beans lectin and peanut agglutinin caused much lower or little agglutination of the cells. The mature sperm exhibited markedly higher efficacy than the immature caput epididymal sperm for binding both ConA and WGA, as evidenced by sperm agglutination and the binding of the fluorescence isothiocyanate (FITC)-labelled lectins. FITC-ConA binds uniformly to the entire mature sperm surface whereas FITC-WGA binds to the acrosomal cap region of the head. The FITC-RCA2 mainly labelled the posterior head of mature cauda sperm. However, no WGA-specific glycoprotein receptors could be detected in sperm plasma membrane (PM) by WGA-Sepharose affinity chromatography. The data implied that the epididymal sperm maturation is associated with a marked increase in the ConA/WGA receptors and that WGA receptors may be glycolipids rather than glycoproteins. Analysis of the ConA receptors of cauda sperm PM identified by ConA-Sepharose affinity chromatography and subsequent resolution in SDS-PAGE demonstrated the presence of five glycopolypeptides of different concentrations (98, 96, 43, 27 and 17 kDa) of goat sperm membrane. The immunoblot of these ConA-specific glycopeptides with anti-sperm membrane antiserum showed that 98- and 96-kDa receptors are immunoresponsive.  相似文献   

12.
We found an intra-acrosomal antigen of about 155,000 daltons (155 kDa) in a survey using the monoclonal antibody MC101 raised against mouse cauda epididymal spermatozoa. Morphological studies by means of indirect immunofluorescence and immunogold electron microscopy localized the antigen to the cortex region of the anterior acrosome. Avidin biotin complex immunocytochemistry initially demonstrated a faint signal at the anterior acrosome in the testis spermatozoa that increased in intensity as the sperm moved toward the distal epididymis. This incremental immunoreactivity was also confirmed by immunoblotting following one-dimensional SDS-PAGE. The 155 kDa protein band was immunostained, and it was much more intense in the cauda epididymal than in the caput and corpus epididymal spermatozoa. Only a trace or no immunostain was evident in the caput or testis spermatozoa. The antigen localization did not change during passage through the epididymis, being confined at the cortex region of the anterior acrosome. The epididymal epithelial cells were not immunostained. These findings suggested that the 155 kDa protein is biochemically modified, further implying that the biochemical alteration of intra-acrosomal material is involved in sperm maturation in the epididymis. © 1995 wiley-Liss, Inc.  相似文献   

13.
Post-translational glycosylation is a universal modification of proteins in eukarya, archaea and bacteria. Two recent publications describe the first confirmed report of a bacterial N-linked glycosylation pathway in the human gastrointestinal pathogen Campylobacter jejuni. In addition, an O-linked glycosylation pathway has been identified and characterized in C. jejuni and the related species Campylobacter coli. Both pathways have similarity to the respective N- and O-linked glycosylation processes in eukaryotes. In bacteria, homologues of the genes in both pathways are found in other organisms, the complex glycans linked to the glycoproteins share common biosynthetic precursors and these modifications could play similar biological roles. Thus, Campylobacter provides a unique model system for the elucidation and exploitation of glycoprotein biosynthesis.  相似文献   

14.
To determine sequential surface glycoprotein changes in ram spermatozoa during epididymal maturation, labeling procedures were used that were specific for galactosyl, galactosaminyl, and sialyl residues. Spermatozoa and fluids were collected from the rete testis through surgically inserted catheters or flushed from the lumen of selected regions of the epididymis: i.e., caput, proximal and distal corpus, and cauda epididymidis. Ejaculated spermatozoa were collected by electrical stimulation. Electrophorectic analysis of galactose (GAO)-sodium boro[3H]hydride (NaB3H4)-treated spermatozoa revealed a sharp overall decrease in carbohydrate residue labeling during sperm transport through the efferent ducts and caput epididymidis, whereas several high molecular weight components in the 600K to 250K zone persisted throughout epididymal transit. Preincubation of spermatozoa with neuraminidase (NEUA) exposed galactose residues that had not been labeled with GAO alone (i.e., 97K, 43K, 24K) in both cauda epididymal and ejaculated spermatozoa. Treatment with sodium metaperiodate-NaB3H4 labeled many of the surface components displayed by NEUA-GAO-treated spermatozoa and revealed an overall shift in sialyl residue labeling from high molecular weight components in immature testicular spermatozoa to low molecular weight components in mature cells. The labeling procedures applied allowed only a qualitative interpretation of the results and they presumably represent the minimum possible changes. Nonetheless, our results demonstrate that glycoproteins are a major factor in surface transformations of ram spermatozoa in the epididymis, especially during the initial stages of maturation.  相似文献   

15.
Cellular prion protein (Prp(C)) is a glycoprotein usually associated with membranes via its glycosylphosphatidylinositol (GPI) anchor. The trans-conformational form of this protein (Prp(SC)) is the suggested agent responsible for transmissible neurodegenerative spongiform encephalopathies. This protein has been shown on sperm and in the reproductive fluids of males. Antibodies directed against the C-terminal sequence near the GPI-anchor site, an N-terminal sequence, and against the whole protein showed that the Prp isoforms were compartmentalized within the reproductive tract of the ram. Immunoblotting with the three antibodies showed that the complete protein and both N- and C-terminally truncated and glycosylated isoforms are present within cauda epididymal fluid and seminal plasma. Moreover, we demonstrate that in these fluids, the Prp(C) isoforms are both in a soluble state as well as associated with small membranous vesicles (epididymosomes). We also report that only one major glycosylated 25 kDa C-terminally truncated Prp(C) isoform is associated with sperm from the testis, cauda epididymis, and semen, and this form is also present in the sperm cytoplasmic droplets that are released during maturation. In sperm, this C-terminal truncated form was found to be associated with membrane lipid rafts present in the mature sperm, suggesting a role for it in the terminal stages of sperm maturation.  相似文献   

16.
Lactoferrin has been for the first time purified from the porcine cauda epididymal fluid as a 70 kDa protein. Both Western and Northern blot analyses show that lactoferrin is synthesized in the regions from the distal caput to the cauda epididymis and secreted into the luminal fluid. Lactoferrin is first secreted as a 75 kDa glycoprotein and its carbohydrate moieties are gradually digested to form 70 kDa protein in the cauda epididymis. Lactoferrin has already bound to the surface of the epididymal sperm because the anti-lactoferrin antiserum induces the mature sperm tail-to-tail agglutination. These results strongly suggest new physiological functions of lactoferrin on the sperm maturation in the epididymis. Mol. Reprod. Dev. 47:490–496, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
G W Wertz  M Krieger    L A Ball 《Journal of virology》1989,63(11):4767-4776
The synthesis of the extensively O-glycosylated attachment protein, G, of human respiratory syncytial virus and its expression on the cell surface were examined in a mutant Chinese hamster ovary (CHO) cell line, ldlD, which has a defect in protein O glycosylation. These cells, used in conjunction with an inhibitor of N-linked oligosaccharide synthesis, can be used to establish conditions in which no carbohydrate addition occurs or in which either N-linked or O-linked carbohydrate addition occurs exclusively. A recombinant vaccinia virus expression vector for the G protein was constructed which, as well as containing the human respiratory syncytial virus G gene, contained a portion of the cowpox virus genome that circumvents the normal host range restriction of vaccinia virus in CHO cells. The recombinant vector expressed high levels of G protein in both mutant ldlD and wild-type CHO cells. Several immature forms of the G protein were identified that contained exclusively N-linked or O-linked oligosaccharide side chains. Metabolic pulse-chase studies indicated that the pathway of maturation for the G protein proceeds from synthesis of the 32-kilodalton (kDa) polypeptide accompanied by cotranslational attachment of high-mannose N-linked sugars to form an intermediate with an apparent mass of 45 kDa. This step is followed by the Golgi-associated conversion of the N-linked sugars to the complex type and the completion of the O-linked oligosaccharides to achieve the mature 90-kDa form of G. Maturation from the 45-kDa N-linked form to the mature 90-kDa form occurred only in the presence of O-linked sugar addition, confirming that O-linked oligosaccharides constitute a significant proportion of the mass of the mature G protein. In the absence of O glycosylation, forms of G bearing galactose-deficient truncated N-linked and fully mature N-linked oligosaccharides were observed. The effects of N- and O-linked sugar addition on the transport of G to the cell surface were measured. Indirect immunofluorescence and flow cytometry showed that G protein could be expressed on the cell surface in the absence of either O glycosylation or N glycosylation. However, cell surface expression of G lacking both N- and O-linked oligosaccharides was severely depressed.  相似文献   

18.
A highly purified 15 kDa glycoprotein isolated from ejaculated spermatozoa was used to raise antisera in female rabbits. An indirect immunofluorescence technique was used to detect the antigen in the seminal vesicle tissue and on the acrosomes of ejaculated, native and capacitated, boar spermatozoa. No immunoreactivity was detected on cells of the seminiferous tubules (spermatogonia, spermatocytes, and spermatids), on spermatozoa in the ductus epididymis and in cells of the epididymal and testicular tissues. These observations support the view that the 15 kDa protein is produced in the seminal vesicle secretory epithelium, and is attached to the sperm plasma membrane during the exposure of spermatozoa to seminal vesicle compounds. The observations that the antigen remained on the acrosome of ejaculated spermatozoa after capacitation and blocked sperm-oocyte binding in vitro suggest that the antigen plays a role in sperm-egg interactions. The strong immunoreactivity exhibited by cumulus cells after incubation of antisera with the porcine egg surrounded by cumulus cells shows the possible importance of the 15 kDa glycoprotein for contact of spermatozoa with cells of the cumulus oophorus surrounding the egg.  相似文献   

19.
Mammalian spermatozoa acquire functionality during epididymal maturation and ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to investigate the impact of epididymal maturation, ejaculation and capacitation on phosphotyrosine content of sperm proteins. Western blot, immunocytochemical and flow cytometry analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues of the sperm head followed by a subtle increase after in vitro capacitation. As cells pass from caput to cauda epididymis, tyrosine phosphorylation becomes confined to a triangular band over the posterior part of midacrosome region, whereas in vitro capacitation causes a spread labeling over the whole head. Different bands with phosphotyrosine residues were detected during epididymal maturation and after in vitro capacitation: 1) 93, 66 and 45 kDa bands with specific phosphotyrosine expression in immature spermatozoa; 2) 76, 23 and 12 kDa bands with specific phosphotyrosine expression in mature spermatozoa, being significantly increased in their expression after in vitro capacitation; 3) 49, 40, 37, 30, 26 and 25 kDa constitutive bands that increased their phosphotyrosine expression after maturation and/or in vitro capacitation; and 4) 28 and 20 kDa bands with a specific phosphotyrosine expression in in vitro capacitated spermatozoa. These results provided integral novel data of expression and location of phosphotyrosine residues during epididymal maturation, ejaculation and in vitro capacitation of boar spermatozoa. Two new constitutive proteins bands of 26 and 25 kDa with phosphotyrosine residues were also identified.  相似文献   

20.
The surface membrane of mammalian spermatozoa is known to undergo considerable conformational and organizational changes during epididymal maturation. However, much less is known about remodelling of intracellular membranes. In this communication we have used specific immunological markers to study the behavior of several antigens both on and within rat spermatozoa as they mature in the epididymis. Four monoclonal antibodies (McAbs) designated 5B1, 1B5, 2D6, and 1B6 were used to probe testicular and caput and cauda epididymal spermatozoa by indirect immunofluorescence and immunogold labeling techniques. None of the McAbs bound to testicular spermatozoa; in all cases, they became reactive only on spermatozoa which had reached the caput epididymis. McAb 5B1 was restricted to the outer acrosomal membrane (OAM) of the acrosomal cap domain. The epitope first appeared on antigen(s) with molecular mass (Mr) of approximately 200 kDa in immature spermatozoa, but later in mature spermatozoa the antigen(s) had Mr of approximately 160 kDa. The antigen(s) recognized by 1B5 McAb on the other hand was initially distributed over the OAM of the entire acrosomal domain (cap + equatorial segment), but during maturation it became progressively more restricted in area until in cauda spermatozoa only the anterior tip of the OAM bound the McAb. McAb 2D6 also bound to the entire OAM and acrosomal contents of caput spermatozoa, but, unlike 5B1 and 1B5 McAbs, reactivity was transient. That is, staining was first detected in caput spermatozoa but then disappeared in corpus and cauda spermatozoa. In contrast to all of the above, 1B6 McAb bound to the surface membrane overlying the entire head domain of caput spermatozoa, but during maturation it became restricted to the postacrosomal domain. These results indicate that, in addition to remodeling of the surface membrane during epididymal maturation, extensive processing of intracellular membrane antigens also takes place and that it is very active within the acrosome. The nature of these intracellular processing events remains to be elucidated, but they may have important consequences for membrane fusion and cell recognition phenomena during fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号