首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu(2+) ion interaction with DNA in aqueous solutions containing urea (0-5 M) was studied by IR spectroscopy. It was shown that upon the Cu(2+) ion binding DNA transition into a compact form occurs. This transition is of positive cooperativity. We suppose that the mechanism of Cu(2+)-induced DNA compaction in solutions containing urea is not completely electrostatic. Urea addition to the DNA solution decreases the Cu(2+) ion concentration required to induce DNA compaction. As the urea content in solution rises, the binding constant of Cu(2+) ions interacting with DNA increases, going through the maximum in the case of 2 M solution; further increase of the urea content in solutions leads to decrease of the binding constant. DNA transition into the compact form under the Cu(2+) ion action is determined not only by the effects of the solution dielectric permeability but by the solvation effects; when changes of the dielectric permeability are small the solvation effects may prevail. Urea addition to the DNA solution also decreases cooperativity of the DNA compaction process. Perhaps, cooperativity of the DNA transition into the compact state depends on the ordered spatial structure of water adjacent to the macromolecule and decreases on the structure destruction.  相似文献   

2.
3.
The binding of a few drugs (ethidium bromide, propidium diiodide, proflavine and actinomycin D) to DNA has been investigated in aqueous solutions to which cosolvents of different polarity have been added. It is found that both alcohols (less polar than water) and amides (more polar) lower the binding constant according to a linear relationship between the intercalation free energy and cosolvent concentration. The main action of cosolvents cannot be described in terms of electrostatic effects, since they predict much smaller changes in the binding constant than those observed. It appears instead that relevant solvation effects are responsible for the binding strength of the different dyes to DNA. As a general result, it is found that solvation effects largely contribute to the intercalation free energy, thereby weakening the influence of nonspecific interactions at the intercalation site.  相似文献   

4.
5.
We use molecular dynamics to simulate recent neutron scattering experiments on aqueous solutions of N-acetyl-leucine-amide and N-acetyl-glutamine-amide, and break down the total scattering function into contributions from solute-solute, solute-water, water-water, and intramolecular correlations. We show that the shift of the main diffraction peak to smaller angle that is observed for leucine, but not for glutamine, is attributable primarily to alterations in water-water correlations relative to bulk. The perturbation of the water hydrogen-bonded network extends roughly two solvation layers from the hydrophobic side chain surface, and is characterized by a distribution of hydrogen bonded ring sizes that are more planar and are dominated by pentagons in particular than those near the hydrophilic side chain. The different structural organization of water near the hydrophobic solute that gives rise to the inward shift in the main neutron diffraction peak under ambient conditions may also provide insight into the same directional shift for pure liquid water as it is cooled and supercooled.  相似文献   

6.
Wu Y  Voth GA 《Biophysical journal》2003,85(2):864-875
Classical molecular dynamics simulations using the multistate empirical valence bond model for aqueous proton transport were performed to characterize the hydration structure of an excess proton inside a leucine-serine synthetic ion channel, LS2. For such a nonuniform pore size ion channel, it is found that the Zundel ion (H(5)O(2)(+)) solvation structure is generally more stable in narrow channel regions than in wider channel regions, which is in agreement with a recent study on idealized hydrophobic proton channels. However, considerable diversity in the relative stability of the Zundel to Eigen cation (H(9)O(4)(+)) was observed. Three of the five wide channel regions, one located at the channel's center and the other two located near the channel mouths, are found to show extraordinary preference for the Eigen solvation structure. This implies that proton hopping is inhibited in these regions and therefore suggests that these regions may behave as barriers in the proton conducting pathway inside the channel. The proton solvation is also greatly influenced by the local molecular environment of the protein. In particular, the polar side chains of the Ser residues, which are intimately involved in the solvation structure, can greatly influence proton solvation. However, no preference of the influence by the various Ser side chains was found; they can either promote or prevent the formation of certain solvation structures.  相似文献   

7.
Monoethanolamine (MEA) is the most typical alkanolamine and its aqueous solutions are widely used for CO2 absorption with mature technology, but the regeneration process is energy consuming. To reduce the energy demand, non-aqueous solvents, such as methanol and ethanol are proposed to substitute water in amine solutions. To understand the influence of the aqueous and non-aqueous solvents on CO2 capture process, the chemical reactions of MEA absorbing CO2 were conducted via ab initio calculations. The non-aqueous solvents discussed in this paper are methanol, ethanol, 1-propanol and 2-propanol. The reaction patterns were investigated and energy barriers were observed. The results show that zwitterion formation and the followed intermolecular hydrogen transfer are proven to be the most possible reaction pattern in both aqueous and non-aqueous solvents. The energy analysis shows that the forward reaction energy barriers increase while the backward barriers decrease as the solvent changes from water to methanol, ethanol, 1-propanol and 2-propanol in turn. The decreases of the energy barriers for backward processes are much higher than the corresponding increases for forward processes. These results indicate that lower energies are required in non-aqueous solvents than in water during the desorption reactions and the non-aqueous solvents are very promising to reduce the regeneration energy consumption in MEA capturing CO2 process. Moreover, the reaction energy gaps between different solvation effects were found to have linear relationship with the logarithm of the dielectric constant difference, which could provide an easy way to theoretically predict the reaction energies of monoethanolamine absorbing CO2 in other solvation effect and can be used to screen appropriate CO2 capture solvent.  相似文献   

8.
We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.  相似文献   

9.
The quasi-elastic incoherent neutron-scattering method has been used to investigate the mobility of water molecules associated with the protein, alpha-chymotrypsin, both in aqueous solution and adjacent to a charged surfactant interface. The latter was studied by solubilizing the protein as monomer in the aqueous cores of small water-in-oil microemulsion droplets (radius 3.5 nm). The droplets were stabilised by an interfacial shell of a double-chain surfactant (Aerosol-OT). The spectra of the water in both these protein-containing system contained a component corresponding to a 7-fold reduction in mobility as compared with bulk water. The integrated intensity of this 'immobilised' spectra component shows that a maximum of approx. 450 water molecules, corresponding to half complete monolayer coverage, are associated with a single protein molecule. This value of 450 may contain a contribution from exchangeable hydrogens within the protein, but this contribution is estimated to be small. The mobility of the remainder of the water is unaffected. The solvation behaviour of the protein is similar in bulk water and in the microemulsion water droplets.  相似文献   

10.
AIMS: To survey biofilm accumulation within domestic copper plumbing pipes in South Australian drinking water distribution systems and examine its role in copper solvation (cuprosolvency). METHODS AND RESULTS: Cold water copper pipes were sampled from two different plumbing systems receiving filtered and unfiltered potable water respectively. Biomass was quantified by total organic carbon measurements and viable cell counts and microbial activity by respirometry. Biofilm accumulation was related to water chemistry within the systems, particularly nutrients, alkalinity and conductivity, as well as water turbulence. Laboratory coupon experiments were used to determine the effect of extracted biofilm on copper solvation. Biofilms were shown to be capable of both increasing and decreasing aqueous copper concentrations in comparison to sterile controls. CONCLUSIONS: The results suggest that water quality may influence the accumulation of biofilms in copper plumbing systems, as well as potential cuprosolvency activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of biofilms in copper plumbing systems and their ability to influence aqueous copper concentrations has implications for both public health and the management of distribution systems.  相似文献   

11.
The neurotoxin fasciculin-2 (FAS2) is a picomolar inhibitor of synaptic acetylcholinesterase (AChE). The dynamics of binding between FAS2 and AChE is influenced by conformational fluctuations both before and after protein encounter. Submicrosecond molecular dynamics trajectories of apo forms of fasciculin, corresponding to different conformational substates, are reported here with reference to the conformational changes of loop I of this three-fingered toxin. This highly flexible loop exhibits an ensemble of conformations within each substate corresponding to its functions. The high energy barrier found between the two major substates leads to transitions that are slow on the timescale of the diffusional encounter of noninteracting FAS2 and AChE. The more stable of the two apo substates may not be the one observed in the complex with AChE. It seems likely that the more stable apo form binds rapidly to AChE and conformational readjustments then occur in the resulting encounter complex.  相似文献   

12.
A simple molecular model for the thermodynamic behavior of non-polar solutes in water and in aqueous solutions of protein denaturants is presented. Three contributions are considered: (i) combinatorial arising from the mixing process, (ii) interactional characterizing the molecular interactions occurring in the mixture and (iii) a contribution originating from the structural changes occurring in the first shell of water molecules around the solute. The latter is modeled assuming that water molecules in contact with the solute are involved in a chemical equilibrium between two states. The model describes well the temperature and denaturant concentration dependences of the Gibbs energies of solution and transfer for benzene, toluene and alkanes in water and aqueous solutions of urea and guanidine hydrochloride. Model parameters are physically meaningful, allowing a discussion of the molecular interactions involved. A preferential solvation of the solute by the denaturant is found. However, the non-polar solute-denaturant interaction is not specific, i.e. leading to a distinct chemical entity. Urea and guanidine hydrochloride are non-polar solubilizing agents because their interactions with the solute are less unfavorable than those between water and the solute.  相似文献   

13.
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.  相似文献   

14.
By use of D2O we found that the shortening of the longitudinal proton relaxation time which occurs in the investigated aqueous yeast DNA solutions (≦ 2.4% with 2% protein) was not based on a hydration effect, but was caused by magnetic impurities only. An estimate shows that the mobility of the hydrated water molecules is reduced by less than two orders of magnitude in comparison with the free water molecules.  相似文献   

15.
1H NMR relaxation studies of protein-polysaccharide mixtures   总被引:1,自引:0,他引:1  
NMR water proton relaxation was used to characterize the structure of plant proteins and plant protein-polysaccharide mixtures in aqueous solutions. The method is based on the mobility determination of the water molecules in the biopolymer environment in solutions through relaxation time measurements. Differences of conformation between pea globulin and alpha gliadin seem to control the water molecules mobility in their environment. As deduced from the study of complexes, the electrostatic interactions may also play a major role in the water molecule motions. The phase separation induced under specific conditions seems to promote the translational diffusion of structured water molecules whereas the rotational motion was more restricted.  相似文献   

16.
By means of RSMR changes of human serum albumen intramolecular mobility by addition of 1.5% and 7.5% of glutar dialdehyde (GD) in concentrated protein solution, heat denaturation of a protein or substitution of water by water-glycerol solvent with amount of water to glycerol: 1 to 2 were studied. It is shown that the elastic fraction for HSA is changed much less addition of GD or by heat denaturation than by substitution of water solution by water-glycerol. It seems that the observed strong influence of glycerol on intramolecular mobility of HSA is connected mostly with effective dehydration of protein (by substitution of the part of a water solvent by glycerol) and with a small volume decrease of protein (due to preference hydration effect) rather than with the increase of the solvent viscosity.  相似文献   

17.
The anti-oxidant properties of L-ascorbic acid were investigated in the confined medium produced by a sodium bis(2-ethylhexyl)sulfosuccinate (aerosol-OT, AOT) self-assembled reverse micelle. Using 1H-1H NOESY (proton-proton 2D nuclear overhauser enhancement correlation spectroscopy) NMR spectroscopy, the location of ascorbic acid was investigated and found to be at the AOT-interface in contrast to earlier studies where the ascorbate was assumed to be in the water pool in these microemulsions. The reaction of ascorbic acid with oxygen was investigated using EPR spectroscopy. A delocalized monoanionic ascorbate radical was observed in microemulsions prepared from pH 5.6 stock solutions. This is in contrast to studies carried out in aqueous media where no radical formation was observed. The oxidation of ascorbic acid by aqueous V(V) was investigated in reverse micelles. Modest changes in the kinetic parameters were observed for this system compared to that in water. Details of these reactions were examined and can be summarized as the microemulsion solvating and stabilizing reactive intermediates via rate inhibition or enhancement. The inhibition of the oxidation is due to solvation stabilization of ascorbic acid in microemulsion media. Since ascorbate is a valuable marker of oxidative stress, our results suggest that compartmentization can modify the stabilization of the ascorbate radical and the changes in properties could be important in biological systems.  相似文献   

18.
The amount of unfreezable water in lysozyme and bovine serum albumin in aqueous solutions of xylitol, sorbitol, glucose and sucrose was estimated by a differential scanning calorimeter according to new analytical methods. The antemelting point of aqueous polyol solutions seemed to shift to a higher temperature upon addition of protein, but the incipient melting point was not affected by the coexisting protein. The amount of unfreezable water in both proteins, as well as the heat of fusion of ice, decreased with increasing polyol concentration, regardless of the kind of polyols added. On the basis of these results, the solvation structure of the protein in these three-component systems and the mechanism of the polyol-induced stabilization of protein were discussed assuming protein–polyol interactions.  相似文献   

19.
20.
A Ramachandran map of the conformational potential of mean force (pmf) for neocarrabiose in water was obtained using molecular dynamics (MD) simulations with umbrella sampling. The potential energy map calculated in a previous study for this molecule in vacuum exhibited a global minimum located at (phi = 81 degrees, psi = -141 degrees). However, the global minimum on the new pmf map in aqueous solution is located in an area centered around (phi = 175 degrees, psi = 180 degrees), indicating a considerable solvent shift. This new global minimum-energy solution conformation was found to correspond to the experimental value obtained from NMR-NOE measurements, and is also consistent with the experimental crystal structure for neocarrabiose and the fiber diffraction conformation for iota-carrageenan. The global minimum of the solution pmf and its local topology were found to be approximately reproduced by quick vacuum conformational energy mapping using several approximations that mimic solvation effects by de-emphasizing intramolecular hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号