首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of L-lysine was examined in isolated renal cortical tubule fragments from adult and 1-week-old dogs. Lysine uptake by adult tubules was initially more rapid than that by the immature tubules. This uptake by mature tubules reached a steady state after 30 min of incubation, while the newborn tubules still had not reached a steady state by 90 min of incubation. Because a steady state of lysine uptake was not attained with the immature tubules, their uptake of lysine exceeded that of the adult after 60 min of incubation. Kinetic studies revealed that lysine was taken up by one saturable transport system with a Km of 0.56 mM and Vmax of 6.18 mmol/liter intercellular fluid per 5 min in the adult and one saturable transport system in the 1-week-old with a Km of 0.38 mM and Vmax of 3.66 mmol/l intracellular fluid per 5 min. Lysine also entered the renal tubule cells in both age groups via a diffusional pathway with a kd of 0.35 min-1 in the adult and 0.30 min-1 in the newborn. Cystine competitively inhibited lysine uptake by adult dog tubules with a Ki of 0.61 mM. The other dibasic amino acids, ornithine and arginine, also inhibited lysine uptake in both the adult and the newborn.  相似文献   

2.
L-Phenylalanine was actively transported by conidia of Fusarium sulphurenum Schlect (isolate 1). Uptake was optimal at pH 7, 30 degrees C; respiration-dependent; and was unaffected by relatively high internal concentrations of phenylalanine. The Km for transport was 1-3 X 10(-5) M and the Vmax was 2.5-4 nmol/min per milligram dry weight. Phenylalanine is transported by a general transport system for basic and neutral amino acids. Sucrose repressed uptake of phenylalanine and this repression was largely negated by cycloheximide. Efflux of accumulated phenylalanine was influx-dependent; this transport system deteriorated slowly with aging of the conidial culture.  相似文献   

3.
The uptake of L-lysine was examined in isolated renal cortical tubules. Lysine was actively taken up by the renal tubule cells isolated from 7-week-old rats. No metabolism of the transported lysine was found. There was no evidence for sodium-dependence of lysine uptake. Concentration dependence studies revealed that the lysine was taken up by one saturable transport system with a Km of 1.66 mmol/l and Vmax of 7 mmol/l intracellular fluid per 10 min. Lysine also entered by a non-saturable pathway. Arginine and ornithine inhibited the initial uptake of lysine. Cystine increased the efflux of lysine from preloaded renal cells via hetero-exchange, indicating that a common system exists for these two amino acids.  相似文献   

4.
Synaptosomes isolated from adult or newborn rat cerebrum take up L-lysine by two saturable systems, one with a high affinity low capacity and the other with a low affinity high capacity. Initial rate of uptake for low lysine concentrations is mort tissue. Analysis of kinetic data indicates that synaptosomes of the newborn have a higher Vmax than those of the adult for high affinity system but adult for high affinity system but adult synaptosomes have a higher Vmax than newborn for low affinity system. At a physiological lysine concentration of 0.5 mM, the calculated contributions of two systems indicate that the adult uptake occurs for about 71% by low affinity system but the newborn utilizes both systems to the same extent. The uptake is sodium independent but pH dependent. Lysine uptake is inhibited by other dibasic amino acids, arginine and ornithine but not cystine. Kinetic analysis indicates that arginine specifically inhibits the high affinity, low Km system for lysine uptake.  相似文献   

5.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

6.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

7.
Interactions among the transport of diverse amino acids in everted intestine of snail Helix aspersa have been studied. The uptake of 0.5 mM methionine is clearly inhibited by high concentrations (40 mM) of leucine, and not by proline or lysine, whereas the last two amino acids inhibit cycloleucine uptake. Methionine strongly inhibits proline and lysine uptake, which is significantly inhibited by their analogs hydroxiproline and arginine, respectively. Results suggest that in Helix intestine the transport systems for basic amino acids and iminoacids are shared with high affinity by methionine whereas the neutral amino acids transport systems do not seem to be shared, or are so very weakly, by the basic ones or by the imino acids.  相似文献   

8.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

9.
The transport of 2-oxoisocaproate into isolated hepatocytes and liver mitochondria of rat was studied using [U-14C]2-oxoisocaproate and the silicone oil filtration procedure. 2-Oxoisocaproate uptake by hepatocytes was composed of: rapid adsorption, unmediated diffusion and carrier-mediated transport. The carrier-mediated transport was strongly inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid and p-chloromercuribenzoate, was less sensitive to alpha-cyano-4-hydroxycinnamate and insensitive to p-chloromercuriphenylsulphonate. Other 2-oxo acids: pyruvate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, were also inhibitory. The kinetic parameters of the carrier-mediated transport were Km 30.6 mM and Vmax 23.4 nmol/min per mg wet wt, at 37 degrees C. It is concluded that at its low, physiological, concentration, 2-oxoisocaproate penetrates the hepatocyte membrane mainly by unmediated diffusion. The uptake of 2-oxoisocaproate by isolated liver mitochondria was partly inhibited by alpha-cyano-4-hydroxycinnamate, the inhibitor of mitochondrial monocarboxylate carrier. The remaining uptake was linearly dependent on 2-oxoisocaproate concentration and represented unmediated diffusion. The carrier-mediated transport exhibited the following kinetic parameters: Km 0.47 mM, Vmax 1.0 nmol/min per mg protein at 6 degrees C; and Km 0.075 mM and Vmax about 8 nmol/min per mg protein at 37 degrees C.  相似文献   

10.
Transport of methylamine by Pseudomonas sp. MA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Pseudomonas sp. MA grows on methylamines as a sole source of carbon, nitrogen, and energy. The transport of methylamine into the organism was investigated. It was found that this organism possesses an inducible transport system for methylamine having the following physical parameters: pH optimum, 7.2; temperature optimum, 30 to 35 degrees C; Km, 1 to 30 mM; Vmax, 90 to 120 nmol/min per mg (dry weight) of cells. Methylamine uptake was curtailed by azide, cyanide, and carbonyl cyanide-m-chlorophenylhydrazone; osmotic shock treatment reduced the uptake by 50%. The uptake was not effectively inhibited by ammonium ion, amino acids, or amides, but was competitively inhibited by short-chain alkylamines. Cells grown on succinate-ammonium chloride did not possess the transport system, but it could be induced in such cells by methylamine in 20 h. Cells grown with methylamine as a sole nitrogen, but not carbon, source transported methylamine at a reduced rate.  相似文献   

11.
A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine.  相似文献   

12.
13.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

14.
Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence.  相似文献   

15.
Pantothenic acid transport was studied in the isolated perfused rat heart and isolated sheep cardiac sarcolemmal vesicles. In the perfused heart, pantothenic acid transport was significantly greater if hearts were perfused as working hearts rather than Langendorff hearts, but was unaffected by the perfusion substrates used (11 mM glucose or 1.2 mM palmitate). Uptake rates of pantothenic acid in working hearts are dependent on perfusate concentrations of pantothenic acid (a Vmax of 418 nmol/g dry weight/30 min and a Km for pantothenic acid of 10.7 mircoM were obtained). Reduction in perfusate Na+ concentration from 145 to 105 mM (the Na+ was replaced with 40 mM choline) resulted in a small but significant decrease in pantothenic acid uptake. At 145 mM Na+, addition of a mixture of amino acids, whose uptake is Na+-dependent, resulted in a significant decrease in pantothenic acid uptake by the heart (173 +/- 5 to 132 +/- 12 nmol/g dry weight). If an inward Na+ gradient in isolated, purified sarcolemmal vesicles, was imposed, a rapid uptake of pantothenic acid was observed. Uptake rates are markedly reduced if Na+ was replaced by equimolar concentrations of K+ or if external Na+ was reduced below 40 mM. In the presence of Na+, increasing pantothenic acid concentrations resulted in an increase in pantothenic acid uptake by the vesicles. Combined, these data demonstrate that pantothenic acid is transported across the myocardial sarcolemmal membrane by a Na+-dependent mechanism, which may be common to a number of small molecules.  相似文献   

16.
Protein D2 of Pseudomonas aeruginosa outer membrane is known to facilitate the specific permeation of imipenem (N-formimdoylthienamycin) across this membrane barrier. We have characterized the binding site in the protein D2 channel by studying the competitive inhibition, by various solutes, of imipenem diffusion into the periplasm. We found that basic amino acids, lysine, arginine, histidine, and ornithine, were effective inhibitors. L- and D-lysine were found to be competitive inhibitors with approximate Ki values of 0.6 and 0.3 mM, respectively. Peptides containing L-lysine at the carboxyl terminus, as well as dipeptides containing L-lysine at the amino terminus, were also able to inhibit the transport. Wild type cells transported tripeptide Thr-Ser-Lys into the periplasm three to four times as rapidly as the mutant cells lacking the D2 protein. These results suggest that protein D2 plays a physiologically significant role in the uptake of basic amino acids and peptides containing these amino acids across the outer membrane of P. aeruginosa.  相似文献   

17.
Limited Blood-Brain Barrier Transport of Polyamines   总被引:3,自引:1,他引:2  
Transport of polyamines across the blood-brain barrier of adult rats was examined by measuring the amount of radioactivity that reached the forebrain 5 s after a "bolus" intracarotid injection. The values were expressed by the brain uptake index (BUI), which is the percentage of material transported in relation to freely diffusible water in a single passage through the brain. Transport was restricted as indicated by the respective BUI values, presented as means +/- SD (number of animals): putrescine, 5.3 +/- 0.8 (11); spermidine, 6.1 +/- 1.3 (7); and spermine, 5.8 +/- 0.5 (4). A kinetic study of the transport of [14C]putrescine showed that transport due to passive diffusion accounted for the majority of the observed influx (66% at 1 mM putrescine). However, a small saturable component exists with a Km value of 4-5 mM and a Vmax of 30 nmol X min-1 X g-1. This Km value is considerably higher than the circulating levels of the polyamine in the normal mature animal, and thus is unlikely to be of physiological significance. Competition studies indicated that putrescine does not interact with carriers for adenosine, arginine, choline, or leucine.  相似文献   

18.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

19.
Vacuolar uptake of ornithine and lysine was characterized inNeurospora crassausing a cupric ion permeabilization system. Michaelis constants were measured as 1.4 mM for lysine and 11.0 mM for ornithine, and maximal velocities were determined. Vacuolar lysine uptake was shown to be inhibited competitively byl-arginine and histidine while ornithine uptake was inhibited by a variety of amino acids. Strains defective in the vacuolar ornithine permease were isolated using a filtration enrichment method. Two isolates—RSC-39 and RSC-63—had a reduced ability to accumulate ornithine. Vacuolar uptake of amino acids was measured using cupric ion-permeabilized mycelia; both strains had reduced ornithine uptake while lysine uptake and arginine uptake were normal. For both isolates, both the Michaelis constant and the maximal velocity for ornithine uptake were reduced compared to those of wild type. These results suggest that both strains are defective in the gene which encodes the vacuolar ornithine permease.  相似文献   

20.
Transport of arginine into mitochondria of Neurospora crassa has been studied. Arginine transport was found to be saturable (Km = 6.5 mM) and to have a pH optimum of pH 7.5. Mitochondrial arginine transport appeared to be facilitated transport rather than active transport because: (i) the arginine concentration within the mitochondrial matrix after transport was similar to that of the reaction medium, and (ii) uncouplers and substrates of oxidative phosphorylation did not affect the transport rate. The basic amino acids ornithine, lysine, and D-arginine inhibited arginine transport. The arginine transport system could be irreversibly blocked by treating mitochondria with the reactive arginine derivative, N-nitrobenzyloxycarbonyl-arginyl diazomethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号