共查询到20条相似文献,搜索用时 15 毫秒
1.
R A Sanders F M Rauscher J B Watkins 《Journal of biochemical and molecular toxicology》2001,15(3):143-149
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense. 相似文献
2.
The aim of this study was to investigate the microscopic and biochemical effects of vanadyl sulfate on liver tissue of normal
and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. Degenerative
changes were observed in diabetic animals by light and transmission electron microscopes. Although there were individual differences
in diabetic animals to which vanadium was given, some reduction of degenerative changes were detected. After 60 d of treatment,
serum aspartate and alanine transaminase, alkaline phosphatase, blood glucose levels, liver lipid peroxidation, and nonenzymatic
glycosylation significantly increased, but liver glutathione levels significantly decreased in the diabetic group. On the
other hand, treatment with vanadyl sulfate reversed these effects. As a result, it might be concluded that vanadyl sulfate
has a protective effect on damage of liver of streptozotocin-induced diabetic rats. 相似文献
3.
Background
Sleeve gastrectomy (SG) has emerged recently as a stand-alone bariatric procedure to treat morbid obesity and enhance glucose homeostasis. The aim of the study was to evaluate its effects in neonatally streptozotocin (STZ)-induced diabetic rats (n-STZ diabetic rats).Methodology and Principal Findings
To induce diabetes, STZ (90 mg/kg) was administered intraperitoneally to 2-day-old male pups. When 12 weeks old, diabetic rats were randomized into sleeve operation group (SLG, n = 6) and sham operation group (SOG, n = 6). Body weights were monitored weekly, and daily consumption of water and food were followed for eight consecutive weeks postoperatively. Serum glucose levels were measured periodically at the 4th and 8th week after surgery. Insulin, ghrelin, glucose-dependent insulinotropic polypeptide (GIP) and Glucagon-like peptide-1 (GLP-1) levels were assayed at the end of the study. Our data showed that SLG rats exhibited significantly lower body weight gain in addition to reduced food and water intakes postoperatively compared to their sham-operation counterparts. However, resolution of diabetes was not observed in our study. Correspondingly, there were no significant differences between SOG rats and SLG rats in glucose metabolism-associated hormones, including insulin, GIP and GLP-1. In contrast, ghrelin level significantly decreased (P<0.01) in SLG group (58.01±3.75 pg/ml) after SG surgery compared to SOG group (76.36±3.51 pg/ml).Conclusions
These observations strongly suggest that SG is effective in controlling body weight. However, SG did not achieve resolution or improvement of diabetes in n-STZ diabetic rats. 相似文献4.
Samantha A Whitman Min Long Georg T. Wondrak Hongting Zheng Donna D. Zhang 《Experimental cell research》2013
The role of Nrf2 in disease prevention and treatment is well documented; however the specific role of Nrf2 in skeletal muscle is not well described. The current study investigated whether Nrf2 plays a protective role in an STZ-induced model of skeletal muscle atrophy. 相似文献
5.
Effects of pycnogenol treatment on oxidative stress in streptozotocin-induced diabetic rats 总被引:1,自引:0,他引:1
Maritim A Dene BA Sanders RA Watkins JB 《Journal of biochemical and molecular toxicology》2003,17(3):193-199
Free radicals and oxidative stress have been implicated in the etiology of diabetes and its complications. This in vivo study has examined whether subacute administration of pycnogenol, a French pine bark extract containing procyanidins that have strong antioxidant potential, alters biomarkers of oxidative stress in normal and diabetic rats. Diabetes was induced in female Sprague-Dawley rats by a single injection of streptozotocin (90 mg/kg body weight, ip), resulting (after 30 days) in subnormal body weight, increased serum glucose concentrations, and an increase in liver weight, liver/body weight ratios, total and glycated hemoglobin, and serum aspartate aminotransferase activity. Normal and diabetic rats were treated with pycnogenol (10 mg/kg body weight/day, ip) for 14 days. Pycnogenol treatment significantly reduced blood glucose concentrations in diabetic rats. Biochemical markers for oxidative stress were assessed in the liver, kidney, and heart. Elevated hepatic catalase activity in diabetic rats was restored to normal levels after pycnogenol treatment. Additionally, diabetic rats treated with pycnogenol had significantly elevated levels of reduced glutathione and glutathione redox enzyme activities. The results demonstrate that pycnogenol alters intracellular antioxidant defense mechanisms in streptozotocin-induced diabetic rats. 相似文献
6.
Roberta Schmatz Maria Rosa Chitolina Schetinger Roselia Maria Spanevello Cinthia Melazzo Mazzanti Naiara Stefanello Paula Acosta Maldonado Jessié Gutierres Maísa de Carvalho Corrêa Eduardo Girotto Maria Beatriz Moretto Vera Maria Morsch 《Life sciences》2009,84(11-12):345-350
AimsDiabetes mellitus is associated with platelet alterations that may contribute to the development of cardiovascular complications. The present study investigates the effects of resveratrol (RSV), an important compound with cardioprotective activities, on NTPDase, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5′-nucleotidase and adenosine deaminase (ADA) activities in platelets from streptozotocin (STZ)-induced diabetic rats.Main methodsThe animals were divided into six groups (n = 8): control/saline; control/RSV 10 mg/kg; control/RSV 20 mg/kg; diabetic/saline; diabetic/RSV 10 mg/kg; diabetic/RSV 20 mg/kg. RSV was administered during 30 days and after this period the blood was collected for enzymatic assay.Key findingsThe results demonstrated that NTPDase, E-NPP and 5′-nucleotidase activities were significantly higher in the diabetic/saline group (P < 0.05) compared to control/saline group. Treatment with RSV significantly increased NTPDase, 5′-nucleotidase and E-NPP activities in the diabetic/RSV10 and diabetic/RSV20 groups (P < 0.05) compared to diabetic/saline group. When RSV was administered per se there was also an increase in the activities of these enzymes in the control/RSV10 and control/RSV20 groups (P < 0.05) compared to control/saline group. ADA activity was significantly increased in the diabetic/saline group (P < 0.05) compared to control/saline group. The treatment with RSV prevented this increase in the diabetic/RSV10 and diabetic/RSV20 groups. No significant differences in ADA activity were observed in the control/RSV10 and control/RSV20 compared to control/saline group.SignificanceThe present findings demonstrate alterations in nucleotide hydrolysis in platelets of STZ-induced diabetic rats and treatment with RSV was able to modulate adenine nucleotide hydrolysis, which may be important in the control of the platelet coagulant status in diabetes. 相似文献
7.
Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats 下载免费PDF全文
Margaret E. Brosnan Barbara V. Roebothan Douglas E. Hall 《The Biochemical journal》1980,190(2):395-403
1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicated by an increase in all four of these constituents to or above control values. 3. Spermidine content was increased in the livers of diabetic rats, despite the decrease in RNA, but it was further increased by insulin treatment. Spermine content was decreased by diabetes, but was unchanged by insulin treatment. Thus the ratio spermidine/spermine in the adult diabetic rat was more typical of that seen in younger rats, whereas insulin treatment resulted in a ratio similar to that seen in rapidly growing tissues. 4. Ornithine decarboxylase activity was variable in the diabetic rat, showing a positive correlation with endogenous ornithine concentrations. This correlation was not seen in control or insulin-treated rats. Insulin caused a significant increase in ornithine decarboxylase activity relative to control or diabetic rats. 5. S-Adenosylmethionine decarboxylase activity was increased approx. 2-fold by diabetes and was not further affected by insulin. 6. Hepatic concentrations of the glucogenic amino acids, alanine, glutamine and glycine were decreased by diabetes. Their concentrations and that of glutamate were increased by injection of insulin. Concentrations of ornithine, proline, leucine, isoleucine and valine were increased in livers of diabetic rats and were decreased by insulin. Diabetes caused a decrease in hepatic concentration of serine, threonine, lysine and histidine. Insulin had no effect on serine, lysine and histidine, but caused a further fall in the concentration of threonine. 相似文献
8.
F M Rauscher R A Sanders J B Watkins 《Journal of biochemical and molecular toxicology》2001,15(3):159-164
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense. 相似文献
9.
Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats 总被引:6,自引:0,他引:6
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties. 相似文献
10.
11.
12.
Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats 总被引:5,自引:0,他引:5
Increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. This study was designed to determine whether alpha-lipoic acid, which has been shown to have substantial antioxidant properties, when administered (10 mg/kg ip) once daily for 14 days to normal and diabetic female Sprague-Dawley rats would prevent diabetes-induced changes in biomarkers of oxidative stress in liver, kidney and heart. Serum glucose concentrations, aspartate aminotransferase activity, and glycated hemoglobin levels, which were increased in diabetes, were not significantly altered by alpha-lipoic acid treatment. Normal rats treated with a high dose of alpha-lipoic acid (50 mg/kg) survived but diabetic rats on similar treatment died during the course of the experiment. The activity of glutathione peroxidase was increased in livers of normal rats treated with alpha-lipoic acid, but decreased in diabetic rats after alpha-lipoic acid treatment. Hepatic catalase activity was decreased in both normal and diabetic rats after alpha-lipoic acid treatment. Concentrations of reduced glutathione and glutathione disulfide in liver were increased after alpha-lipoic acid treatment of normal rats, but were not altered in diabetics. In kidney, glutathione peroxidase activity was elevated in diabetic rats, and in both normal and diabetic animals after alpha-lipoic acid treatment. Superoxide dismutase activity in heart was decreased in diabetic rats but normalized after treatment with alpha-lipoic acid; other cardiac enzyme activities were not influenced by either diabetes or antioxidant treatment. These results suggest that after 14 days of treatment with an appropriate pharmacological dose, alpha-lipoic acid may reduce oxidative stress in STZ-induced diabetic rats, perhaps by modulating the thiol status of the cells. 相似文献
13.
14.
Ovarian dysfunction in streptozotocin-induced diabetic rats 总被引:1,自引:0,他引:1
M Tesone R G Ladenheim R M Oliveira-Filho V A Chiauzzi V G Foglia E H Charreau 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1983,174(1):123-130
The effect of streptozotocin diabetes on some ovarian functions in adult rats was examined. Diabetic diestrus animals showed reduced ovary weight and lower circulating levels of progesterone. Scatchard plots of binding data derived from ovarian particulate fractions of normal and streptozotocin diabetic rats revealed the presence of one class of binding sites with high affinity for 125I-hCG. The apparent association constant of the hCG receptors of diabetic ovaries was comparable to that of normal gonads. However, a marked decrease (42%) in the number of hCG binding sites was found in diabetic animals. With isolated luteal cells similar results were obtained, and the administration of insulin to streptozotocin diabetic rats restored to normality the number of hCG binding sites. The maximal response of progesterone production by luteal cells from control ovaries was obtained with 10(-10) M hCG. A 100-fold higher concentration of hCG was required for the maximum stimulation of cAMP synthesis. The cAMP response of cells from diabetic rats was significantly higher than that of control cells. However, luteal cells from diabetic rats showed some loss of sensitivity in the synthesis of progesterone during incubation with hCG. Most of the alterations seen in diabetic female rats could be restored with insulin therapy, indicating that insulin plays an important role in the regulation and maintenance of normal reproductive functions. It is suggested that the diminution of the LH receptor population causes the disruption of normal luteal cell function. This fact could be responsible for some of the reproductive alterations in the diabetic female rat. 相似文献
15.
Hon-Chi was used for anti-hyperglycemic activity screening in streptozotocin-induced diabetic rats (STZ-diabetic rats) in an attempt to develop new substances for handling diabetes. Mandarin Hon-Chi is red yeast rice fermented with Monascus pilous and Monascus purpureus. Single oral administration of Hon-Chi decreased plasma glucose in STZ-diabetic rats in a dose-dependent manner from 50 mg/kg to 350 mg/kg. Similar treatment with Hon-Chi also lowered the plasma glucose in normal rats as effectively as that produced in STZ-diabetic rats. In addition, oral administration of Hon-Chi at the highest dose (350 mg/kg) attenuated the elevation of plasma glucose induced by an intravenous glucose challenge test in normal rats. Moreover, mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) in liver from STZ-diabetic rats were reversed in a dose-dependent manner by the repeated oral treatment of Hon-Chi three times daily for two weeks. Otherwise, hyperphagia in STZ-diabetic rats was markedly reversed by similar repeated treatment of Hon-Chi. The obtained results suggest that oral administration of Hon-Chi could decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin. 相似文献
16.
Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic rats. 总被引:3,自引:0,他引:3
The effect of beta-endorphin on plasma glucose levels was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats). A dose-dependent lowering of plasma glucose was observed in the fasting STZ-diabetic rat fifteen minutes after intravenous injection of beta-endorphin. The plasma glucose-lowering effect of beta-endorphin was abolished by pretreatment with naloxone or naloxonazine at doses sufficient to block opioid mu-receptors. Also, unlike wild-type diabetic mice, beta-endorphin failed to induce its plasma glucose-lowering effect in the opioid mu-receptor knock-out diabetic mice. In isolated soleus muscle, beta-endorphin enhanced the uptake of radioactive glucose in a concentration-dependent manner. Stimulatory effects of beta-endorphin on glycogen synthesis were also seen in hepatocytes isolated from STZ-diabetic rats. The blockade of these actions by naloxone and naloxonazine indicated the mediation of opioid mu-receptors. In the presence of U73312, the specific inhibitor of phospholipase C (PLC), the uptake of radioactive glucose into isolated soleus muscle induced by beta-endorphin was reduced in a concentration-dependent manner, but it was not affected by U73343, the negative control of U73312. Moreover, chelerythrine and GF 109203X diminished the stimulatory action of beta-endorphin on the uptake of radioactive glucose at a concentration sufficient to inhibit protein kinase C (PKC). The data obtained suggest that activating opioid mu-receptors by beta-endorphin may increase glucose utilization in peripheral tissues via the PLC-PKC pathway to lower plasma glucose in diabetic rats lacking insulin. 相似文献
17.
Guoguo Shang Pan Gao Zhonghua Zhao Qi Chen Tao Jiang Nong Zhang Hui Li 《生物化学与生物物理学报:疾病的分子基础》2013,1832(5):674-684
3, 5-Diiodothyronine (T2), a natural metabolite of triiodothyronine (T3) from deiodination pathway, can mimic biologic effects of T3 without inducing thyrotoxic effects. Recent studies revealed T3 acted as a protective factor against diabetic nephropathy (DN). Nevertheless, little is known about the effect of T2 on DN. This study was designed to investigate whether and how T2 affects experimental models of DN in vivo and in vitro. Administration of T2 was found to prevent significant decrease in SIRT1 protein expression and activity as well as increases in blood glucose, urine albumin excretion, matrix expansion, transforming growth factor-β1 expression, fibronectin and type IV collagen deposition in the diabetic kidney. Concordantly, similar effects of T2 were exhibited in the cultured rat mesangial cells (RMC) exposed to high glucose and that could be abolished by a known SIRT1 inhibitor, sirtinol. Moreover, enhanced NF-κB acetylation and JNK phosphorylation present in both diabetic rats and high glucose-treated RMC were distinctly dampened by T2. Collectively, these results suggested that T2 was a protective agent against renal damage in diabetic nephropathy, whose action involved regulation of SIRT1. 相似文献
18.
Alvarado-Vásquez N Zamudio P Cerón E Vanda B Zenteno E Carvajal-Sandoval G 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,134(4):521-527
Inadequate utilization of glucose in diabetes mellitus favors diverse metabolic alterations that play a relevant role in the physio-pathology of chronic complications of this disease. Streptozotocin-induced diabetic rats were treated daily with glycine (130 mM as optimal concentration) or taurine (40 mM) for six months. Groups of diabetic rats without treatment were used as controls. Glucose, total cholesterol, triacylglycerol, and glycated hemoglobin were determined periodically after inducing diabetes. Rats were killed after 6 months of treatment and histological analyses were performed. Diabetic groups that received glycine or taurine showed significant lower concentrations of glucose, total cholesterol, triacylglycerol, and glycated hemoglobin than diabetic control rats (P<0.05) after 6 months treatment. Histological analyses of diabetic rats showed pancreatic atrophy and necrosis, vacuolization, decrease of beta cells, and diffuse glomerulosclerosis. Diabetic rats treated with glycine or taurine showed less enlargement of the glomerular basal membrane than control diabetic rats. Our results suggest that glycine and taurine reduced the alterations induced by hyperglycemia in streptozotocin-induced diabetic rats probably due to inhibition of oxidative processes. 相似文献
19.
Jung CH Zhou S Ding GX Kim JH Hong MH Shin YC Kim GJ Ko SG 《Bioscience, biotechnology, and biochemistry》2006,70(10):2556-2559
We investigated the effects of herb extracts, Rhus verniciflua, Agrimonia pilosa, Sophora japonica, and Paeonia suffruticosa, on the lowering of blood glucose levels and thiobarbituric acid reactive substances (TBARS) in streptozotocin (STZ)-induced diabetic rats. After 4 weeks, oral administration of Rhus verniciflua extract (50 mg/kg) exhibited a significant decrease in blood glucose levels in diabetic rats (P<0.05). Blood TBARS concentrations, the products of glucose oxidation in blood, were also lowered by Rhus verniciflua extract supplementation. In addition, Sophora japonica and Paeonia suffruticosa extracts significantly reduced TBARS levels versus diabetic controls. Serum concentrations of liver-function marker enzymes, GOT and GPT, were also restored by Rhus verniciflua (50 mg/kg) supplementation in diabetic rats. 相似文献
20.
D-pinitol (3-O-methyl-chiroinositol), an active principle of the traditional antidiabetic plant, Bougainvillea spectabilis, is claimed to exert insulin-like effects. This study was undertaken to evaluate the effect of D-pinitol on lipids and lipoproteins in streptozotocin (STZ)-induced diabetic Wistar rats. Rats were made type II diabetic by single intraperitoneal injection of STZ at a dose of 40 mg/kg body weight. STZ-induced diabetic rats showed significant (p < 0.05) increase in the levels of blood glucose and total cholesterol, triglycerides, free fatty acids, and phospholipids in serum, liver, kidney, heart, and brain. The levels of low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) cholesterol were significantly increased, and the level of high-density lipoprotein (HDL) cholesterol was significantly decreased in diabetic rats Oral administration of D-pinitol to STZ-induced diabetic rats showed significant (p < 0.05) decrease in the levels of blood glucose and total cholesterol, triglycerides, free fatty acids, and phospholipids in serum, liver, kidney, heart, and brain. The D-pinitol also lowered significantly (p < 0.05) LDL and VLDL cholesterol levels and increased significantly (p < 0.05) HDL cholesterol levels in the serum of diabetic rats. Thus, the present study clearly showed the antihyperlipidemic effect of D-pinitol in STZ-induced type II diabetic rats. 相似文献