首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物萜类代谢工程   总被引:10,自引:0,他引:10  
植物萜类化合物不仅在植物生命活动中起重要作用,而且具有重要商业价值。随着近年来萜类代谢途径和调控机理研究的深入,代谢工程已成为提高萜类产量最有潜力的途径之一。对萜类代谢工程领域具代表性的研究结果进行了全面回顾,然后讨论了萜类代谢工程的研究方法和策略,其中重点探讨了功能基因组学方法在萜类代谢途径及调控机理研究方面的应用。  相似文献   

2.
Design and selection of efficient metabolic pathways is critical for the success of metabolic engineering endeavors. Convenient pathways should not only produce the target metabolite in high yields but also are required to be thermodynamically feasible under production conditions, and to prefer efficient enzymes. To support the design and selection of such pathways, different computational approaches have been proposed for exploring the feasible pathway space under many of the above constraints. In this review, an overview of recent constraint‐based optimization frameworks for metabolic pathway prediction, as well as relevant pathway engineering case studies that highlight the importance of rational metabolic designs is presented. Despite the availability and suitability of in silico design tools for metabolic pathway engineering, scarce—although increasing—application of computational outcomes is found. Finally, challenges and limitations hindering the broad adoption and successful application of these tools in metabolic engineering projects are discussed.  相似文献   

3.
构建高产高附加值产品的微生物细胞工厂是代谢工程的研究目标之一,设计高效的产品合成途径是实现这一目标的重要方式.不同微生物底盘因其代谢能力有所差异,故而可以利用的底物和生产的产品范围有限.为了扩大其生产能力,需要进行代谢途径从无到有的设计.传统代谢工程基于经验进行异源途径设计的方式低效且无法确保结果的全面性,而系统生物学...  相似文献   

4.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

5.
代谢工程   总被引:10,自引:1,他引:10  
郁静怡  杨胜利   《生物工程学报》1996,12(2):109-112
代谢工程,也称途径工程,是基因工程一个重要分支,一般是多基因的基因工程,与细胞的基因调控、代谢调控和生化工程密切相关。讨论了代谢工程的应用,包括通过改变代谢流和代谢途径提高产量,改善生产过程,构建新的代谢途径和产生新的代谢产物等。  相似文献   

6.
One-carbon feedstock such as methanol and formate has attracted much attention as carbon substrate of industrial biotechnology for production of value-added chemicals and biofuels. Productivity improvement of natural one-carbon metabolic pathways in native hosts such as methanotrophs is somewhat difficult due to inefficient genetic tools and low specific growth rate. As an alternative, metabolic engineering can create new and efficient metabolic pathways of one-carbon substrate that can be readily transferred to non-native hosts. In this paper, recent progresses in protein and metabolic engineering for creation of methanol and formate-utilizing synthetic pathways based on RuMP cycle and formolase are reviewed. Perspectives on one-carbon metabolic pathway engineering in non-native host are also discussed.  相似文献   

7.
Metabolic engineering is the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology. As such, metabolic engineering emphasizes metabolic pathway integration and relies on metabolic fluxes as determinants of cell physiology and measures of metabolic control. The combination of analytical methods to quantify fluxes and their control with molecular biological techniques to implement genetic modifications is the essence of metabolic engineering. Strategies for metabolic flux determination are reviewed in this paper and it is shown how metabolic fluxes can be used in the systematic elucidation of metabolic control in the framework of reaction grouping and top-down metabolic control analysis.  相似文献   

8.
代谢工程在芳香化合物生物合成研究中的应用   总被引:4,自引:0,他引:4  
生物技术和代谢工程的发展促进了生物合成研究。概述了近年来利用微生物莽草酸途径进行芳香化合物生物合成研究的现况、代谢工程在提高天然芳香化合物产量和扩大合成非天然产生的芳香化合物范围的应用的进展 ,特别是整体代谢工程对提高第二代工程菌产量的作用。指出了生物合成法是生产氨基酸及其它生物小分子如奎尼酸、维生素和抗生素等的未来趋势 ,在工业化生产中有着广阔的应用前景。  相似文献   

9.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:17,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

10.
植物次生代谢基因工程研究进展   总被引:18,自引:0,他引:18  
随着对植物代谢网络日渐全面的认识,应用基因工程技术对植物次生代谢途径进行遗传改良已取得了可喜的进展.对次生代谢途径进行基因修饰的策略包括:导入单个、多个靶基因或一个完整的代谢途径,使宿主植物合成新的目标物质;通过反义RNA和RNA干涉等技术降低靶基因的表达水平,从而抑制竞争性代谢途径,改变代谢流和增加目标物质的含量;对控制多个生物合成基因的转录因子进行修饰,更有效地调控植物次生代谢以提高特定化合物的积累.作者结合对大豆种子异黄酮类代谢调控和基因工程改良的研究,着重介绍了花青素和黄酮类物质、生物碱、萜类化合物和安息香酸衍生物等次生代谢产物生物合成的基因工程研究进展.  相似文献   

11.
丁月月  李霜  黄和 《生物工程学报》2009,25(9):1316-1320
丝状真菌作为一种重要的工业微生物,采用各种表达调控技术对其代谢途径进行改造以便适应生产需求成为当前的研究热点之一。反义RNA技术是代谢工程中调控基因表达的一种重要手段,且由于其操作简单避免了基因敲除技术的复杂性,在丝状真菌体系中有着良好的应用前景。本综述中,从反义RNA的作用机理、真菌体系的基因工程技术以及目前反义RNA技术的应用等方面,对反义RNA技术在丝状真菌代谢工程中的应用进行了概述。  相似文献   

12.
Isoflavonoids are a diverse group of secondary metabolites derived from the phenylpropanoid pathway. These compounds are distributed predominantly in leguminous plants and play important roles in plant–environment interactions and human health. Consequently, the biosynthetic pathway of isoflavonoid compounds has been widely elucidated in the past decades. Up to now, most of the structural genes and some of the regulatory genes involved in this pathway have been isolated and well characterized. Nowadays, the protective effects of the legume isoflavonoids against hormone dependent cancers, cardiovascular disease, osteoporosis, and menopausal symptoms have generated considerable interest within the genetic and metabolic engineering fields to enhance the dietary intake of these compounds for disease prevention. Subsequently, there are some great progresses in genetic and metabolic engineering to improve their yields in leguminous and non-leguminous plants and/or microorganisms. Because of the field of flavonoid biosynthesis has been reviewed fairly extensively in the past, this review concentrates on the more recent development in the isoflavonoid branch of phenylpropanoid pathway, including gene isolation and characterization. In addition, we describe the state-of-the-art research with respect to genetic and metabolic engineering of isoflavonoid biosynthesis.  相似文献   

13.
Modeling and simulation: tools for metabolic engineering.   总被引:7,自引:0,他引:7  
Mathematical modeling is one of the key methodologies of metabolic engineering. Based on a given metabolic model different computational tools for the simulation, data evaluation, systems analysis, prediction, design and optimization of metabolic systems have been developed. The currently used metabolic modeling approaches can be subdivided into structural models, stoichiometric models, carbon flux models, stationary and nonstationary mechanistic models and models with gene regulation. However, the power of a model strongly depends on its basic modeling assumptions, the simplifications made and the data sources used. Model validation turns out to be particularly difficult for metabolic systems. The different modeling approaches are critically reviewed with respect to their potential and benefits for the metabolic engineering cycle. Several tools that have emerged from the different modeling approaches including structural pathway synthesis, stoichiometric pathway analysis, metabolic flux analysis, metabolic control analysis, optimization of regulatory architectures and the evaluation of rapid sampling experiments are discussed.  相似文献   

14.
Metabolic engineering is a critical biotechnological approach in addressing global energy and environment challenges. Most engineering efforts, however, consist of laborious and inefficient trial-and-error of target pathways, due in part to the lack of methodologies that can comprehensively assess pathway properties in thermodynamics and kinetics. Metabolic engineering can benefit from computational tools that evaluate feasibility, expense and stability of non-natural metabolic pathways. Such tools can also help us understand natural pathways and their regulation at systems level. Here we introduce a computational toolbox, PathParser, which, for the first time, integrates multiple important functions for pathway analysis including thermodynamics analysis, kinetics-based protein cost optimization and robustness analysis. Specifically, PathParser enables optimization of the driving force of a pathway by minimizing the Gibbs free energy of least thermodynamically favorable reaction. In addition, based on reaction thermodynamics and enzyme kinetics, it can compute the minimal enzyme protein cost that supports metabolic flux, and evaluate pathway stability and flux in response to enzyme concentration perturbations. In a demo analysis of the Calvin–Benson–Bassham cycle and photorespiration pathway in the model cyanobacterium Synechocystis PCC 6803, the computation results are corroborated by experimental proteomics data as well as metabolic engineering outcomes. This toolbox may have broad application in metabolic engineering and systems biology in other microbial systems.  相似文献   

15.
Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.  相似文献   

16.
合成生物学与代谢工程   总被引:5,自引:0,他引:5  
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。  相似文献   

17.
18.
代谢转基因植物的研究现状与展望   总被引:1,自引:0,他引:1  
代谢转基因是通过基因工程技术对细胞内的代谢途径进行遗传修饰,进而完成细胞特性改造。代谢修饰转基因植物是一个极具商业前景的领域,在医药、环境、农业等方面已有许多成功应用的实例。综合调控代谢的基因工程策略,讨论了代谢转基因植物的研究现状,我国农业生产中存在的主要问题和代谢转基因技术对我国农业发展的意义和前景。  相似文献   

19.
李宏 《生物信息学》2012,10(1):55-60
代谢工程是近年来发展起来的新技术,随着各种组学技术的发展,高通量数据整合方法用于分析细胞的代谢网络,改造代谢途径,以提高目标产物的产量。本文就代谢工程的发展状况,基因组尺度的分析技术,以及代谢工程策略进行了综述。分析了生物信息学和系统生物学方法在代谢途径构建和代谢网络分析中的作用,并就存在的问题和可能的解决途径进行了阐述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号