首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The study describes the distribution of several basement membrane molecules in the embryonic chick wing bud from stages 23 to 26, during the onset of myogenesis and chondrogenesis, and then later at stage 28. Laminin is localized as early as stage 23, prior to the onset of myogenesis, in regions corresponding to the position of the future dorsal and ventral myogenic areas. Other matrix components, including fibronectin, do not differentially accumulate in these same regions. Fibronectin, basement membrane heparan sulphate proteoglycan and type IV collagen are more widespread in their distribution than laminin, and are even present between mesenchymal cells. These results suggest a role for laminin in the initial differentiation of the muscle masses and emphasize that components of basement membrane can also be associated with mesenchymal cells.  相似文献   

4.
Summary Type II collagen is a major component of hyaline cartilage but recent studies have demonstrated the presence of this protein in a variety of interfaces that separate epithelia from mesenchyme, particularly in early stages of embryonic chick development. In the present study an immunohistochemical analysis of the distribution of type II collagen was performed on closely staged wing buds of early chick embryo. This report describes how using two different monoclonal antibodies against type II collagen and the peroxidase or fluorescence staining technique reveals that deposition of type II collagen at the ectoderm-mesenchyme interface occurs in the proximal part of the limb coincidentally with the appearance of this protein in the proximal core region, where chondrogenesis begins (stage 25). Then the staining in the subepithelial region spreads distallly with time, following the progression of the formation of cartilage rudiments. At about 7 days of development type II collagen is present under the apical ectoderm ridge and surrounds completely the wing bud underneath the epithelium. At the same time, another antibody directed against the cartilage-specific proteoglycan core protein only stains the chondrogenic central core of the limb and not the subepithelium. Although type II collagen and cartilage-specific proteoglycan are closely associated in the cartilage, the observations presented here suggest that the deposition of these proteins can be regulated independently during limb formation. The role of type II collagen at the epithelium-mesenchyme interface during limb formation is still to be determined.  相似文献   

5.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

6.
Distribution of laminin and collagens during avian neural crest development   总被引:5,自引:0,他引:5  
The distribution of type I, III and IV collagens and laminin during neural crest development was studied by immunofluorescence labelling of early avian embryos. These components, except type III collagen, were present prior to both cephalic and trunk neural crest appearance. Type I collagen was widely distributed throughout the embryo in the basement membranes of epithelia as well as in the extracellular spaces associated with mesenchymes. Type IV collagen and laminin shared a common distribution primarily in the basal surfaces of epithelia and in close association with developing nerves and muscle. In striking contrast with the other collagens and laminin, type III collagen appeared secondarily during embryogenesis in a restricted pattern in connective tissues. The distribution and fate of laminin and type I and IV collagens could be correlated spatially and temporally with morphogenetic events during neural crest development. Type IV collagen and lamin disappeared from the basal surface of the neural tube at sites where neural crest cells were emerging. During the course of neural crest cell migration, type I collagen was particularly abundant along migratory pathways whereas type IV collagen and laminin were distributed in the basal surfaces of the epithelia lining these pathways but were rarely seen in large amounts among neural crest cells. In contrast, termination of neural crest cell migration and aggregation into ganglia were correlated in many cases with the loss of type I collagen and with the appearance of type IV collagen and laminin among the neural crest population. Type III collagen was not observed associated with neural crest cells during their development. These observations suggest that laminin and both type I and IV collagens may be involved with different functional specificities during neural crest ontogeny. (i) Type I collagen associated with fibronectins is a major component of the extracellular spaces of the young embryo. Together with other components, it may contribute to the three-dimensional organization and functions of the matrix during neural crest cell migration. (ii) Type III collagen is apparently not required for tissue remodelling and cell migration during early embryogenesis. (iii) Type IV collagen and laminin are important components of the basal surface of epithelia and their distribution is consistent with tissue remodelling that occurs during neural crest cell emigration and aggregation into ganglia.  相似文献   

7.
We have examined the temporal expression of genes for extracellular matrix proteins (type I collagen, type II collagen, and the cartilage specific proteoglycan core protein) during the development of the avian mandibular arch. We detected low levels of type II collagen mRNA in the mandibular arch as early as stage 15. Type II collagen mRNA remained low but increased slightly as development progressed from stage 15 to stage 25. More dramatic increases occurred after stage 25 coincident with overt chondrogenesis. In contrast, mRNA for the core protein of cartilage specific proteoglycan was not detected prior to the onset of chondrogenesis, appeared at stage 25, and increased thereafter. Type I collagen mRNA was also present as early as stage 15 and dramatically increased after stage 28/29, coincident with initiation of osteogenesis. Using in situ hybridization, we found that type II collagen mRNA became detectable in the center of the mandible around stage 24/25 coincident with the initiation of chondrogenesis. At later stages (26-32) type II collagen mRNA was localized in the cartilaginous rudiment. The pattern of hybridization observed with the proteoglycan core protein probe at later stages of development was essentially identical to that observed with the type II collagen probe. In contrast, the probe for the alpha 1 (I) collagen mRNA was localized over the perichondrium, over differentiated bone, and in areas within the mandibular arch where bone formation had been initiated.  相似文献   

8.
Appearance and distribution of the different collagen types and the noncollagenous glycoprotein laminin was studied during early mouse development from unfertilized ova to 8-day embryos using indirect immunofluorescence techniques. Laminin was first detected intracellularly in the 16-cell compacted morula and appeared also intercellularly along cell contours. Type IV collagen was first seen in the blastocyst mainly in the inner cell mass. After implantation intense fluorescence for both of these proteins was found in all the embryonic and extraembryonic basement membranes. The interstitial collagens type I and III were first detected in the 8-day embryo closely codistributed in tissues of mesodermal origin including the head and heart mesenchymes and in basement membranes bounded by mesodermal structures. The results establish a developmental sequence for the appearance of basement membrane and extracellular matrix glycoproteins in early mouse development. The distribution of laminin suggests the presence of extracellular matrix material already in compacted morulae. The appearance of type IV collagen coincides with differentiation of the primitive endoderm and assembly of the first embryonal basement membrane. The appearance of the interstitial collagens during mesoderm differentiation indicates a stage when mesoderm acquires connective tissue characteristics.  相似文献   

9.
In this paper we discuss studies on basement membrane and interstitial matrix molecules in early development and teratocarcinoma differentiation. In the early embryo a compartmentalization of newly formed cell types takes place immediately by formation of basement membranes. The stage-specific developmental appearance of extracellular matrix molecules such as type IV collagen, laminin, entactin, fibronectin and proteoglycans seems to reflect a diversified role of extracellular matrices already in the earliest stages of development. In teratocarcinoma cultures the appearance and composition of extracellular matrices during the differentiation of endoderm cells closely resembles that found in the early embryo. Also in this respect the teratocarcinoma system can be used as a model for studies on early development. In later developmental phenomena other matrix molecules can also be of importance. Merosin, a novel tissue-specific basement membrane-associated protein that appears during muscle and nerve maturation is an example of such molecules.  相似文献   

10.
Indirect immunofluorescence has been used to study the distribution of fibronectin and collagen types I, II, and III in the developing primary and secondary palatal processes and forelimb buds of the Swiss Webster (NIH) mouse. In the palatal processes fibronectin and types I and III collagen are distributed throughout the mesenchyme. Fibronectin is present in the basement membrane, while types I and III collagen are localized in a linear, discontinuous fashion beneath the basement membrane. Fibronectin is not observed in the epithelium, including the presumptive fusion areas. In the forelimb bud these components show a similar distribution prior to chondrogenesis (early day 11). When chondrogenesis commences (late day 11 or early day 12) fibronectin and, to a lesser degree, types I and III collagen are apparently concentrated in the core mesenchyme, suggesting that fibronectin has a role in initiating chondrogenesis, perhaps by increasing cellular aggregation. Type II collagen is observed only in chondrogenic regions. The codistribution of fibronectin and types I and III collagen supports in vitro studies which indicate that cells use fibronectin to bind to collagen in the matrix. The developing chondrogenic regions appear to lose fibronectin gradually, concomitant with the appearance of type II collagen, suggesting that fibronectin is not involved in the maintenance of functional chondrocytes in their matrices.  相似文献   

11.
12.
Type II collagen is a major component of cartilage extracellular matrix. Differentiation of mesenchyme into cartilage involves the cessation of type I collagen synthesis and the onset of type II collagen synthesis. Solution hybridization of mRNA isolated from chick limb buds with a cDNA probe to type II collagen mRNA showed the presence of small amounts of type II collagen message in mesenchymal chick limbs. We have examined the localization of type II collagen mRNA in mesenchymal chick wing buds by in situ hybridization using single stranded RNA probes. Our results show a small but detectable amount of type II collagen RNA distributed uniformly in early limbs until the first precartilage condensations form at stage 22. This is interesting because it is known that mesenchyme isolated from chick wing buds has the capacity to undergo chondrogenesis in culture, even if taken from nonchondrogenic areas of the limb. At stage 23, type II collagen mRNA is found at significantly increased levels in the cells of the precartilage condensation when compared to the other limb cells. As chondrogenesis proceeds, the amount of type II collagen RNA increases even more in cells of the cartilage elements. The signal in the peripheral tissue is indistinguishable from background. These results show that type II collagen message exists at low levels in cells throughout the mesenchymal chick wing bud, until the formation of the condensation results in an elevation of type II mRNA in the prechondrogenic cells found in the core of the limb.  相似文献   

13.
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.  相似文献   

14.
Appearance of the different collagen types was studied during the clawed toad development from hatching to metamorphosis, using indirect immunofluorescence techniques. Type-like IV collagen of basement membranes was first seen in the notochord streath. Type I, type II were detected at the same time, followed by type III. Developmental sequence and distribution of the four collagen types indicate the different stages of organogenesis.  相似文献   

15.
We have examined the in vitro stage-related chondrogenic potential of avian mandibular ectomesenchymal cells using micromass cultures. Our results indicate that mandibular ectomesenchymal cells as early as stage 16, soon after the formation of the mandibular arches and well before the initiation of in vivo chondrogenesis, have chondrogenic potential which is expressed in micromass culture. There is an increase in the total area of the cultures occupied by cartilage when cells from increasing stages of development are used. The nodular pattern of chondrogenesis in these cultures indicates that mandibular ectomesenchymal cells are a heterogenous population from the time of mandibular arch formation. In addition, we studied the temporal expression of the genes for extracellular matrix proteins during in vitro chondrogenesis and correlated the morphological changes with the pattern of gene expression. Low levels of type II collagen mRNA are present in the cultures prior to detection of any stainable cartilage matrix and increase 5 fold just before the onset of chondrogenesis in vitro. On the other hand mRNA for cartilage proteoglycan core protein was not detected until the second day of culture when stainable cartilage matrix was present and progressively increased thereafter. Messenger RNA for type I collagen was present at the time of initiation of cultures and continuously increased during the culture period. Our experiments also indicated that embryonic epithelia can inhibit the in vitro chondrogenesis of mandibular ectomesenchymal cells and that the inhibitory effect of embryonic epithelia is independent of its age and site of origin.  相似文献   

16.
Antibodies directed against the product of the Xenopus homeobox gene Xhox3 were raised and used to localize the expression of Xhox3 in the embryo at different stages of development. These studies suggest that endogenous Xhox3 protein is distributed in a graded fashion in the nuclei of mesodermal cells along the anterior-posterior (A-P) and dorso-ventral (D-V) axes in the postgastrula embryo with low levels in anterior and ventral regions and higher levels in posterior and dorsal regions. Xhox3 protein is also detected at different times in the midbrain, spinal cord and hindbrain. In the hindbrain, Xhox3 displays different metameric expression patterns in dorsal and ventral regions during early embryogenesis and metamorphosis. We have tested for the early function of Xhox3 by injecting antibodies against the Xhox3 protein into the cytoplasm of developing embryos. A significant number of embryos injected with Xhox3 antibodies show posterior (trunk and tail) deficiencies. This posterior deficient phenotype constitutes the opposite of the anterior (head) deficient phenotype obtained after overexpresson of Xhox3 reported previously. These results suggest that expression of Xhox3 in the posterior mesoderm is necessary for posterior development and that the graded distribution of Xhox3 in the embryonic mesoderm is required for the development of normal embryonic axial pattern.  相似文献   

17.
The distribution of basement membrane glycoproteins (type IV collagen, laminin, fibronectin, and proteoglycans) was studied in foetal rat kidney by immunohistochemical techniques using polyclonal antibodies. From the first stages of nephron differentiation, all these glycoproteins were detectable by immunofluorescence in the tubular and glomerular basement membranes and in the mesangial matrix. As differentiation proceeded, labelling of glycoproteins progressively intensified, except for that of fibronectin, which gradually decreased in the glomerular basement membrane (GBM) and was barely observable at full differentiation. With immunoperoxidase staining in electron microscopy, all glycoproteins were seen to be widely dispersed in the spaces between the epithelial and endothelial glomerular cells so long as the GBM remained a loose structure. However, after it became a compact, 3-layered formation, type IV collagen and laminin were distributed throughout the GBM, whereas proteoglycans and anionic sites appeared as 2 rows of granules confined to the laminae rarae.  相似文献   

18.
The regulatory role of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) signaling has been implicated in embryonic skeletal development. Here, we studied chondrogenic differentiation of the mouse embryonal carcinoma-derived clonal cell line ATDC5 as a model of chondrogenesis in the early stages of endochondral bone development. ATDC5 cells retain the properties of chondroprogenitor cells, and rapidly proliferate in the presence of 5% FBS. Insulin (10 micrograms/ml) induced chondrogenic differentiation of the cells in a postconfluent phase through a cellular condensation process, resulting in the formation of cartilage nodules, as evidenced by expression of type II collagen and aggrecan genes. We found that differentiated cultures of ATDC5 cells abundantly expressed the high affinity receptor for PTH (Mr approximately 80 kD; Kd = 3.9 nM; 3.2 x 10(5) sites/cell). The receptors on differentiated cells were functionally active, as evidenced by a PTH-dependent activation of adenylate cyclase. Specific binding of PTH to cells markedly increased with the formation of cartilage nodules, while undifferentiated cells failed to show specific binding of PTH. Northern blot analysis indicated that expression of the PTH/PTHrP receptor gene became detectable at the early stage of chondrogenesis of ATDC5 cells, preceding induction of aggrecan gene expression. Expression of the PTH/PTHrP receptor gene was undetectable in undifferentiated cells. The level of PTH/PTHrP receptor mRNA was markedly elevated parallel to that of type II collagen mRNA. These lines of evidence suggest that the expression of functional PTH/PTHrP receptor is associated with the onset of chondrogenesis. In addition, activation of the receptor by exogenous PTH or PTHrP significantly interfered with cellular condensation and the subsequent formation of cartilage nodules, suggesting a novel site of PTHrP action.  相似文献   

19.
Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform alpha1(IV)(2)alpha2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both alpha-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号